
BOI 2021
Lübeck, Germany (online only)

April 23–26, 2021

Day 2
Task: xanadu

Spoiler

The Xana coup (xanadu)
by lukas michel (germany)

Abridged problem statement. You are given a tree with 𝑁 vertices, where every node is initially either
turned on or off. Every vertex has a button. Now you can execute the following operation several
times: You press the button at vertex 𝑣 which toggles vertex 𝑣 and all of its direct neighbors. Toggling
a vertex means turning it on if it’s currently turned off and vice versa. Now you are to find the minimal
number of button presses needed to turn off all vertices.
There are a few important insights in this problem.

• For every vertex, it’s only important whether we toggled this vertex an even or an odd number
off times. It’s easy to see this: After toggling a vertex once, it changes its state, and if we toggle
it a second time, it returns to its initial state.

• The order of the button presses doesn’t matter.
• It doesn’t make sense to press a button more than once. This would toggle the vertex and its
neighbors an even number of times, causing no change.

• So we will press every button either 0 or 1 times. This means the solution will either be between
0 and 𝑁 or it will be impossible to turn off all vertices.

Subtask 1. 𝑁 ≤ 20

After observing that we have to press every button either 0 or 1 times, the first subtask is really
straightforward. Just try all possible subsets of buttons to press. For every subset check if pressing
those buttons turns off all nodes and then choose the subset with the minimal number of buttons
that turns off all nodes. This yields an easy 𝑂(𝑁 ⋅ 2𝑁) solution that should easily fit into the time limit.

Subtask 2. 𝑁 ≤ 40

There are several solutions for the second subtask. One possible solution is to first find a centroid.
We root the tree at this centroid. Then, every subtree will have at most 𝑁/2 vertices. Let’s first assume
we don’t press the centroid’s button. We now run the brute force from subtask 1 on every subtree.
This way, we determine the minimal number of button presses if we press the button of the root of
this subtree and the minimal number of button presses if we don’t press the button of the root of this
subtree. Now, we have to combine the solutions of the subtrees. Obviously, if the centroid is turned
on, we have to press an odd number of children’s buttons, and an even number otherwise.
To combine the solutions efficiently, we can iterate over all children. We have two variables 𝑒𝑣𝑒𝑛 and
𝑜𝑑𝑑 that represent the minimal number of button presses if we want to press an even or odd number
of children’s buttons. 𝑒𝑣𝑒𝑛 is initially set to 0 and 𝑜𝑑𝑑 to ∞. Now let’s assume we are currently
processing a child. Let 𝑝1 be the minimal number of button presses to turn off the subtree of the child
if we want to press the child’s button, and 𝑝2 the same value if we don’t want to press the child’s
button. Then we set 𝑒𝑣𝑒𝑛 = 𝑚𝑖𝑛(𝑜𝑑𝑑 + 𝑝1, 𝑒𝑣𝑒𝑛 + 𝑝2) and 𝑜𝑑𝑑 = 𝑚𝑖𝑛(𝑒𝑣𝑒𝑛 + 𝑝1, 𝑜𝑑𝑑 + 𝑝2). The logic
behind this: If we want to press an even number, we can either press an odd number before and then
press the current child’s button, or we press an even number before and we don’t press the current
child’s button.

1/3



BOI 2021
Lübeck, Germany (online only)

April 23–26, 2021

Day 2
Task: xanadu

Spoiler

Of course, after having processed all children, our result is in 𝑒𝑣𝑒𝑛 if the centroid was turned off and
in 𝑜𝑑𝑑 if the centroid was turned on. Now, we press the button of the centroid and repeat the same
procedure again, adding 1 at the end. This solution runs in 𝑂(𝑁 ⋅ 2𝑁/2).
Another, perhaps more approachable solution starts by dividing the tree into its bipartite parts,
i.e. dividing the set of vertices into two sets such that every edge has a vertex in each of them. Then,
the smaller of these parts has at most 𝑁/2 vertices; let’s call the set of vertices in this part 𝑉1 and the
other one 𝑉2. Note that whether a vertex in 𝑉2 is turned on only depends on this vertex’s button and
on buttons of vertices in 𝑉1.
We can now brute force all possible button presses for 𝑉1. With these fixed, the state of any vertex in
𝑉2 only depends on its own button; this means that we know whether we have to press it so that the
vertex is off in the end. Now that all buttons in 𝑉2 are fixed, we can check whether the vertices in 𝑉1
are all off. If they are, we have a possible solution. We then just take the minimal number of button
presses over all solutions. This algorithm also runs in 𝑂(𝑁 ⋅ 2𝑁/2).

Subtask 3. The graph is a line.

Vertex 1 will only have one neighbor, vertex 2. Imagine we press the button at vertex 1. Then, we
already know whether we have to press the button at vertex 2 or not: If vertex 1 was previously turned
off, we will have to press button 2, and if vertex 1 was previously turned on, we should not press
button 2. The same holds for all other buttons.
So, deciding whether we press the first button already determines what buttons we press. This yields
an 𝑂(𝑁) solution for this subtask: Try both options (pressing or not pressing the first button) and
choose the option that turns off all vertices in the minimal number of button presses.

Subtask 4. The graph is a binary tree.

If every vertex is directly connected to at most 3 other vertices, we can choose a root 𝑟 such that every
vertex has at most 2 direct children.
We can observe that any vertex 𝑣 only depends on its parent and its ≤ 2 children. Now we can do
dynamic programming on the tree. For every vertex 𝑣 we compute 4 values:

• 𝑑𝑝[0][0][𝑣]: Assuming we didn’t press the button of 𝑣’s parent and we don’t want to press button
𝑣, what is the minimal number of button presses to turn off all nodes in 𝑣’s subtree? This should
be set to∞ if it’s impossible to turn off all vertices under these constraints.

• 𝑑𝑝[0][1][𝑣]: Now we assume that we didn’t press the button of 𝑣’s parent, but we want to press
button 𝑣.

• 𝑑𝑝[1][0][𝑣]: Now we did press the button of 𝑣’s parent and we don’t want to press button 𝑣.
• 𝑑𝑝[1][1][𝑣]: Now we assume that we press both the button of 𝑣’s parent and button 𝑣.

Now let’s assume we have calculated 𝑑𝑝 for all children and now we want to calculate 𝑑𝑝[𝑖][𝑗][𝑣]. First
we check whether after pressing the button of 𝑣’s parent 𝑖 times and button 𝑣 𝑗 times (after toggling 𝑣
𝑖 + 𝑗 times) vertex 𝑣 is turned on or off. If 𝑣 is already turned off, we have to press either both or none
of the children’s buttons. Otherwise we should press exactly one of the children’s buttons. So, we
simply use the 𝑑𝑝-values that we calculated for the children. The overall solution to the problem
then is 𝑚𝑖𝑛(𝑑𝑝[0][0][𝑟], 𝑑𝑝[0][1][𝑟]) because we can either push button 𝑟 or not push button 𝑟. This
solution runs in 𝑂(𝑁).

2/3



BOI 2021
Lübeck, Germany (online only)

April 23–26, 2021

Day 2
Task: xanadu

Spoiler

Subtask 5. No further constraints.

For the full solution we can use the same dynamic programming that we used for subtask 4. We just
have to change how we calculate 𝑑𝑝[𝑖][𝑗][𝑣]. Assume that 𝑣 is turned off after toggling it 𝑖 + 𝑗 times.
Then, we have to press an even number of children’s buttons. Otherwise, we should press an odd
number of children’s buttons.
There are multiple ways to calculate that efficiently, here is one: We use an idea similar to the one we
used for solving subtask 2. For every node, we temporarily calculate 4 values:

• 𝑡𝑚𝑝[0][0]: This should be set to the minimal number of button presses to turn off all vertices in
the children’s subtrees if 𝑣 is not pressed and we press an even number of children’s buttons.

• 𝑡𝑚𝑝[0][1]: Same as before, but we press an odd number of children’s buttons.
• 𝑡𝑚𝑝[1][0]: Now we want to press 𝑣 and an even number of children’s buttons.
• 𝑡𝑚𝑝[1][1]: Here we want to press 𝑣 and an odd number of children’s buttons.

How can we calculate those? We do almost the same as in subtask 2: We initialize the odd 𝑡𝑚𝑝-values
with∞ and the even ones with 0. Now let’s iterate over all children and calculate their 𝑑𝑝. Assume
we are currently processing child 𝑐. Then the we change 𝑡𝑚𝑝 in the following way:

• 𝑡𝑚𝑝[0][0] = 𝑚𝑖𝑛(𝑡𝑚𝑝[1][0] + 𝑑𝑝[0][1][𝑐], 𝑡𝑚𝑝[0][0] + 𝑑𝑝[0][0][𝑐])
We don’t press 𝑣, so we use 𝑑𝑝[0] in both cases. We want to press an even number of children’s
buttons, so we can either press an odd number before (𝑡𝑚𝑝[1][0]) and press 𝑐 or we press an
even number (𝑡𝑚𝑝[0][0]) and don’t press 𝑐.

• 𝑡𝑚𝑝[0][1] = 𝑚𝑖𝑛(𝑡𝑚𝑝[1][1] + 𝑑𝑝[1][1][𝑐], 𝑡𝑚𝑝[0][1] + 𝑑𝑝[1][0][𝑐])
• 𝑡𝑚𝑝[1][0] = 𝑚𝑖𝑛(𝑡𝑚𝑝[0][0] + 𝑑𝑝[0][1][𝑐], 𝑡𝑚𝑝[1][0] + 𝑑𝑝[0][0][𝑐])
• 𝑡𝑚𝑝[1][1] = 𝑚𝑖𝑛(𝑡𝑚𝑝[0][1] + 𝑑𝑝[1][1][𝑐], 𝑡𝑚𝑝[1][1] + 𝑑𝑝[1][0][𝑐])

Now if vertex 𝑣 is turned on after being toggled 𝑖 + 𝑗 times, then 𝑑𝑝[𝑖][𝑗][𝑣] = 𝑗 + 𝑡𝑚𝑝[1][𝑗], because we
need an odd number of children’s buttons pressed. Else, 𝑑𝑝[𝑖][𝑗][𝑣] = 𝑗 + 𝑡𝑚𝑝[0][𝑗]. This solution runs
in 𝑂(𝑁).

3/3


