Problem H. Coins

Input file:	standard input
Output file:	standard output
Time limit:	5 seconds
Memory limit:	512 mebibytes

There are n groups of coins, and the i-th group contains two coins valued as a_{i} and b_{i}. Now you want to pick exactly k coins out of them. However, there is a restriction: you can not pick the second coin (the one valued as b_{i}) in the i-th group without picking the other one in the same group. In other words, in the i-th group, you can:

- pick none of the two coins;
- pick only the first one valued as a_{i}; or
- pick both of them.

Let $f(k)$ be the maximum total value if we pick exactly k coins.
Find the values $f(1), f(2), \ldots, f(2 n)$.

Input

The input contains several test cases, and the first line contains a single integer $T(1 \leq T \leq 90)$, the number of test cases.
For each test case, the first line contains an integer $n(1 \leq n \leq 100000)$, indicating the number of coin groups.
Each of the following n lines contains two integers a_{i} and $b_{i}\left(1 \leq a_{i}, b_{i} \leq 10000\right)$ indicating the coin values in that group.
It is guaranteed that the sum of n in all test cases does not exceed 2100000 .

Output

For each test case, just output $2 n$ integers on a single line representing $f(1), f(2), \ldots, f(2 n)$. Separate consecutive integers by single spaces.

Example

	standard input				standard output	
2		4	6	9	11	12
3		14				
1	2	5	7	9		
1	4					
4	2					
2						
1	3					
3	2					

