Problem C
 Pyramid

Time limit: 3 seconds
Memory limit: 1024 megabytes

Problem Description

Consider an $n \times n$ grid where nodes are labelled as (i, j) for $0 \leq i, j<n$. We rotate it 45 degree in clockwise direction and keep only its top half part. Then you get a pyramid, as shown in Figure 1. All of the nodes laid on the anti-diagonal of the grid have labels $(n-1-j, j)$ for $0 \leq j<n$. They are located at the bottom line of the pyramid. For simplicity and clarity, we name node $(n-1-j, j)$ as exit j. Node $(0,0)$ is called the starting point (labelled as P in Figure 11). When you insert a ball from the starting point, this ball will roll down to some of the exits. A ball located at node (i, j) can only roll down to either node $(i+1, j)$ or node $(i, j+1)$, and the ball shall never be broken or split. There is a tiny switch equipped on every node other than the exits that controls the move direction of the ball, and this switch always works well. The switch has exactly two states: either L or R, indicates that the ball can move to node $(i+1, j)$ or $(i, j+1)$, respectively. After the ball leaves this node, the switch changes immediately to the other state. The default setting for a switch is at L.

Figure 1: An example for $n=5$.

When you insert the first ball into P, this ball will reach exit 0 , and the states of nodes $(i, 0)$ for $0 \leq i<n-1$ are now all R 's. Then you insert the second, third, and so on so forth, one by one, until the $k^{\text {th }}$ ball finishes. The status of every switch accumulates with these balls. Please write a program to determine the number of the exit point for the $k^{\text {th }}$ ball.

Input Format

The first line of the input is a number that specifies the number of test cases. Each test case has only one line that gives you two space-delimited numbers n and k.

Output Format

Please output the exit number of the $k^{t h}$ ball in one line.

Technical Specification

- There are at most 20 test cases.
- $1 \leq n \leq 10^{4}$.
- $1 \leq k \leq 10^{8}$.

Sample Input 1

2
51
52

Sample Output 1
0
1
Sample Input 2

3
53
54
55

Sample Output 2

```
2
3
2
```

