

2020 ICPC Asia Taipei-Hsinchu Regional

Problem C Pyramid

Time limit: 3 seconds Memory limit: 1024 megabytes

Problem Description

Consider an $n \times n$ grid where nodes are labelled as (i, j) for $0 \le i, j < n$. We rotate it 45 degree in clockwise direction and keep only its top half part. Then you get a *pyramid*, as shown in Figure 1. All of the nodes laid on the anti-diagonal of the grid have labels (n - 1 - j, j) for $0 \le j < n$. They are located at the bottom line of the pyramid. For simplicity and clarity, we name node (n - 1 - j, j) as exit j. Node (0, 0) is called the starting point (labelled as Pin Figure 1). When you insert a ball from the starting point, this ball will roll down to some of the exits. A ball located at node (i, j) can only roll down to either node (i + 1, j) or node (i, j + 1), and the ball shall never be broken or split. There is a tiny switch equipped on every node other than the exits that controls the move direction of the ball, and this switch always works well. The switch has exactly two states: either L or R, indicates that the ball can move to node (i + 1, j) or (i, j + 1), respectively. After the ball leaves this node, the switch changes immediately to the other state. The default setting for a switch is at L.

Figure 1: An example for n = 5.

When you insert the first ball into P, this ball will reach exit 0, and the states of nodes (i, 0) for $0 \le i < n-1$ are now all R's. Then you insert the second, third, and so on so forth, one by one, until the k^{th} ball finishes. The status of every switch accumulates with these balls. Please write a program to determine the number of the exit point for the k^{th} ball.

Input Format

The first line of the input is a number that specifies the number of test cases. Each test case has only one line that gives you two space-delimited numbers n and k.

Output Format

Please output the exit number of the k^{th} ball in one line.

2020 ICPC Asia Taipei-Hsinchu Regional

Technical Specification

- There are at most 20 test cases.
- $1 \le n \le 10^4$.
- $1 \le k \le 10^8$.

Sample Input 1

2					
5	1				
5	2				

Sample Output 1

0 1

Sample Input 2

3 5 3

54

55

Sample Output 2

2		
3		
2		