Day 3: Kazakhstan Contest 42nd Petrozavodsk Programming Camp, Winter 2022, Thursday, February 3, 2022

Problem L. Restricted Arrays

Input file: standard input
Output file: standard output

Time limit: 4 seconds Memory limit: 256 mebibytes

Let n be a positive integer. Find the number of integers $1 \le M \le n$ for which there exists an array of integers a[1..n] that satisfies the following conditions:

$$a[x_i] + 1 \equiv a[y_i] \pmod{M}, \quad 1 \le i \le q.$$

Input

The first line contains two integers, n and q: the array size and the number of conditions $(1 \le n, q \le 10^6)$. Each of the next q lines contains two integers, x_i and y_i : the indices describing the corresponding condition $(1 \le x_i, y_i \le n)$.

Output

On the first line, print an integer t: the number of possible values of M. On the second line, print the t possible values of M in increasing order.

Examples

standard input	standard output
3 3	2
1 2	1 3
2 3	
3 1	
5 5	2
1 2	1 3
2 3	
3 4	
4 5	
1 5	
5 5	1
1 2	1
2 3	
3 1	
4 5	
5 4	
5 1	5
1 2	1 2 3 4 5