
–
review

Review	of	Meetings

Problem

There	are	 	mountains,	numbered	 from	 	 through	 	 from	 left	 to	 right.	The	height	of	 the
mountain	 	is	 	().	Exactly	one	person	lives	on	each	mountain.

You	 are	 going	 to	 hold	 	 meetings,	 numbered	 from	 	 through	 .	 To	 the	 meeting	 	 (
),	you	will	invite	all	people	living	on	the	mountains	between	the	mountain	 	and

the	mountain	 ,	inclusive.

For	each	meeting,	you	can	choose	a	mountain	as	the	meeting	place.	If	the	mountain	 	is	chosen
as	the	meeting	place,	the	cost	of	the	meeting	is	calculated	as	follows:

The	cost	of	the	meeting	is	the	sum	of	the	costs	of	all	participants.
The	 cost	 of	 the	 participant	 from	 the	 mountain	 	 is	 the	 maximum	 height	 of	 mountains
between	 the	 mountain	 	 and	 the	 mountain	 ,	 inclusive.	 Particularly,	 the	 cost	 of	 the
participant	from	the	mountain	 	is	 .

For	each	meeting,	you	want	to	find	its	minimum	cost.

Constraints

	()
	()

	()

Subtasks	and	Solutions

Subtask	1	(4	points)

,	

If	a	meeting	place	 is	given,	you	can	calculate	 the	cost	of	a	meeting	 in	 .	Thus,	by	 testing
every	possible	meeting	place,	the	cost	of	a	meeting	can	be	calculated	in	 	time.

The	total	time	complexity	is	 .

Subtask	2	(15	points)

,	

By	iterating	through	the	moutains	with	maintaining	an	upper	envelope,	you	can	get	costs	for	all

Review (1 of 4)

meeting	places	in	 	time.

The	total	time	complexity	is	 .

Subtask	3	(17	points)

,	 ,	 	()

Find	 the	 longest	contiguous	subsequence	consisting	only	of	1	by	SegmentTree.	The	 total	 time
complexity	is	 .

Subtask	4	(24	points)

,	 ,	 	()

For	each	meeting,	divide	the	range	at	the	heighest	mountains	and	recursively	solve	the	problem.

If	you	pre-calculate	the	answer	to	some	ranges,	such	as	maximal	ranges	in	which	heights	of	all
mountains	 are	 at	 most	 some	 constant,	 and	 you	 prepare	 a	 proper	 data	 structure	 for	 Range
Minimum	Queries,	you	can	get	the	minimum	cost	of	a	meeting	in	 	time.

Pre-calculation	can	be	done	in	 	time.

The	total	time	complexity	is	 .

Subtask	5	(40	points)

No	additional	constraints.

For	convenience,	let's	assume	that	all	values	of	 	are	distinct	(this	does	not	matter	much).	For
each	meeting,	we	 can	 assume	 that	 the	 index	 of	 the	 optimal	meeting	 place	 is	 greater	 than	 or
equal	to	 ,	because	by	reversing	the	array	 	and	solving	the	same	problem	we
can	get	a	real	answer.

We	denote	 the	problem	of	calculating	the	minimum	cost	of	a	meeting	with	 the	range	 	as
query	 .

Let	 	be	the	answer	to	the	query	 .
Let	 	be	the	smallest	 	such	that	 .
Similarly,	let	 	be	the	largest	 	such	that	 .
Also	let	 	be	the	array	of	length

such	that	the	 -th	()	value	of	 	is

We	are	going	 to	compute	 	 for	all	 ,	 and	 then	 it	 is	easy	 to	get	answers	 to	all	queries.	The
order	of	 indices	 in	which	we	compute	 	 is	 very	 important.	Here,	we	use	depth-first-search
post-order	of	the	cartesian	tree	of	 .

We	define	the	cartesian	tree	of	 	as	the	rooted	tree	such	that	lowest-common-ancestor	of	nodes	
	and	 	is	the	node	 .

Review (2 of 4)

The	cartesian	tree	can	be	obtained	in	linear	time	by	an	iteration	with	a	stack	data	structure.	It
can	be	easily	seen	that	every	node	of	the	cartesian	tree	has	at	most	two	children,	one	to	the	left
and	another	to	the	right.	Let	 	be	the	left	child	of	the	node	 	and	 	be	the	right	child	of
the	node	 	(here	we	assume	that	the	node	 	has	two	children).

Now	the	remaining	task	is	to	somehow	merge	 	and	 	into	 .	Clearly,	first	some
elements	of	 	is	exactly	 .

All	we	need	is	to	compute	 ,	for	all	 	().

Since	 	is	the	maximum	value	in	the	range	 ,	you	can	see

and

where	 .

The	inequality	follows	from	the	observation	that

It	indicates	that	there	exists	a	certain	index	 	such	that

for	all	 ,	and

for	all	 .

Therefore,	you	can	get	 	in	the	following	way:

Let	 	be	the	array	obtained	by	adding	a	certain	value	to	all	elements	of	 .
Update	first	some	elements	of	 	with	a	certain	linear	funtion.
Concatenate	 ,	 ,	and	 .

To	 carry	 out	 these	 operations	 fast,	 we	 use	 a	 compressed	 representation	 for	 .	 	 is
represented	by	the	list	of	ranges.	Each	range	has	a	certain	linear	funciton	such	that	the	values
of	 	in	the	range	can	be	calculaed	by	the	linear	function.

Adding	a	certain	value	can	be	done	by	lazy	propagation.

To	 update	 first	 some	 elements,	 we	 simply	 iterate	 through	 	 from	 the	 beginning.	 The	 ranges
before	the	break	point	is	replaced	by	one	range,	so	the	total	number	of	iterations	is	 .

Concatenating	two	arrays	can	be	done	as	follows:

We	maintain	end	points	of	ranges	in	a	global	set	and	store	the	information	of	ranges	in	a
global	array.	Then,	we	do	not	have	to	do	anything	for	ranges.

Review (3 of 4)

Concatenating	 laze	 propagation	 information	 for	 adding	 can	 be	 done	 by	 Weighted-union
heuristic:

Let	 	be	the	value	which	should	be	added	to	elements	of	the	array	 .
When	we	 concatenate	 two	 arrays	 	 and	 ,	we	 pick	 the	 smaller	 one	 and	 arrange	 the
elements	of	it	so	that	 .
By	Weighted-union	heuristic	this	can	be	done	in	 	time	in	total.

Getting	the	answer	to	a	query	requires	one	lower	bound	operation	of	the	set.	Thus	in	
time	we	can	get	answers	to	all	queries.

The	total	time	complexity	is	 .

Review (4 of 4)

