International Collegiate
Programming Contest

Problem L
 Largest Quadrilateral

Time limit: 6 seconds
Memory limit: 1024 megabytes

Problem Description

Given some points on a 2D Euclidean plane, please calculate the maximum area of quadrilaterals with vertices in given points. For example, points $A(0,0), B(1,0), C(3,1), D(1,2), E(0,1)$ are given. These points form 5 simple quadrilaterals $A B C D, A B C E, A B D E, A C D E, B C D E$ with areas $3,2,1.5,3,3$ respectively and 10 complex quadrilaterals $A B D C, A B E C, A B E D, A C E D$, $B C E D, A C B D, A C B E, A D B E, A D C E, B D C E$ with smaller areas. So the maximum area is 3 .

Figure 4: $B C D E$ has the maximum area 3 among all quadrilaterals.

Please notice that duplicated points may appear in the given points. All the degenerate cases are also taken as quadrilaterals such as quadrilateral $A B C D$ with $A(0,0), B(0,0), C(0,0)$, $D(0,0)$.

Input Format

The first line is an integer T indicating the number of test cases. The first line of each test case contains an integer N followed by N lines. Each line of the following N lines contains two integers X and Y representing a point (X, Y).

Output Format

For each test case, please output the maximum area among all quadrilaterals with vertices in given points.

Technical Specification

- $1 \leq T \leq 3$
- $4 \leq N \leq 4096$
- $0 \leq X \leq 10^{9}$
- $0 \leq Y \leq 10^{9}$
- You may not output numbers with scientific notaions. I.e., outputting 3E8 for 300000000 is not allowed.

聂期

- The area must be outputted without any redundant characters. I.e., outputting 3.0 for 3 is incorrect.

Sample Input 1
3 5 0 0 1 0 3 1 1 2 0 1 4 0 0 4 0 0 4 1 1 4 0 0 1 1 2 2 1 1

Sample Output 1

6

0

Sample Output 2
2.5

