## Problem M. Memento Mori

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
3 seconds
64 mebibytes

Professor Zhang has an $n \times m$ matrix consisting of all zeroes. Professor Zhang changes $k$ elements of the matrix into 1s.
Given a permutation $p$ of $\{1,2,3,4\}$, Professor Zhang wants to find the number of such submatrices that:

- The number of 1 s in the submatrix is exactly 4 .
- Let the positions of the 1 s in the submatrix be $\left(r_{1}, c_{1}\right),\left(r_{2}, c_{2}\right),\left(r_{3}, c_{3}\right)$, and $\left(r_{4}, c_{4}\right)$. Then $r_{1}<r_{2}<r_{3}<r_{4}$ and $\left(p_{i}-p_{j}\right) \cdot\left(c_{i}-c_{j}\right)>0$ for all $1 \leq i<j \leq 4$.
- no other submatrices inside the chosen submatrix meet the above two requirements.


## Input

There are multiple test cases. The first line of input contains an integer $T$ indicating the number of test cases. For each test case:
The first line contains three integers $n, m$ and $k(1 \leq n, m, k \leq 2000)$ : the size of the matrix and the number of 1 s . The second line contains four integers $p_{1}, p_{2}, p_{3}, p_{4}$ denoting the permutation of $\{1,2,3,4\}$.
Each of the next $k$ lines contains two integers $r_{i}$ and $c_{i}\left(1 \leq r_{i} \leq n, 1 \leq c_{i} \leq m\right)$ : the position of the $i$-th 1 . No two 1 s will be in the same position.
There are at most 250 test cases, and the total size of the input is at most 250 kibibytes.

## Output

For each test case, output a single integer: the number of submatrices which meet all the requirements.

## Example

|  |  | standard input |  | standard output |
| :--- | :--- | :--- | :--- | :--- |
| 1 |  |  | 1 |  |
| 5 | 5 | 4 |  |  |
| 1 | 2 | 3 | 4 |  |
| 1 | 1 |  |  |  |
| 2 | 2 |  |  |  |
| 3 | 3 |  |  |  |
| 4 | 4 |  |  |  |

