Problem H. Hills And Valleys

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 megabytes

Tauren has an integer sequence A of length n (1-based). He wants you to invert an interval [l, r]($1 \leq l \leq r \leq n$) of A (i.e. replace A_l, A_{l+1}, \dots, A_r with A_r, A_{r-1}, \dots, A_l) to maximize the length of the longest non-decreasing subsequence of A. Find that maximal length and any inverting way to accomplish that mission.

A non-decreasing subsequence of A with length m could be represented as $A_{x_1}, A_{x_2}, \dots, A_{x_m}$ with $1 \le x_1 < x_2 < \dots < x_m \le n$ and $A_{x_1} \le A_{x_2} \le \dots \le A_{x_m}$.

Input

The first line contains one integer T, indicating the number of test cases.

The following lines describe all the test cases. For each test case:

The first line contains one integer n.

The second line contains n integers A_1, A_2, \dots, A_n without any space.

 $1 \le T \le 100, 1 \le n \le 10^5, 0 \le A_i \le 9 \ (i = 1, 2, \dots, n).$

It is guaranteed that the sum of n in all test cases does not exceed $2 \cdot 10^5$.

Output

For each test case, print three space-separated integers m, l and r in one line, where m indicates the maximal length and [l, r] indicates the relevant interval to invert.

Example

standard input	standard output
2	5 1 8
9	612
864852302	
9	
203258468	

Note

In the first example, 864852302 after inverting [1, 8] is 032584682, one of the longest non-decreasing subsequences of which is 03588.

In the second example, 203258468 after inverting [1, 2] is 023258468, one of the longest non-decreasing subsequences of which is 023588.