Problem G. LCS 8

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
3 seconds
1024 megabytes

You are given a string S of length N, consisting of uppercase letters, and a small nonnegative integer K.
Please compute the number of strings T of length N, consisting of only uppercase letters, such that the longest common subsequence of S and T has length at least $N-K$. As the number could be large, print the number of such strings modulo $10^{9}+7$.
A string $S=s_{1} s_{2} \ldots s_{n}$ is a subsequence of a string $T=t_{1} t_{2} \ldots t_{m}$ if there exists an increasing sequence of indices $1 \leq i_{1}<i_{2}<\ldots<i_{n} \leq m$ such that $s_{x}=t_{i_{x}}$ for all $1 \leq x \leq n$.

Input

The first line of the input contains the length- N string $S(1 \leq|S| \leq 50000)$. All characters of S are uppercase letters.

The next line of the input contains the single integer $K(0 \leq K \leq 3)$.

Output

Print the number of such strings modulo $10^{9}+7$.

Examples

standard input	standard output
ACAYKP 0	1
CAPCAK 1	896
WEDONTNEEDNOEDUCATION 2	24651976
WEDONTNEEDNOTHOUGHTCONTROL 3	224129308

