Problem G. LCS 8

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	1024 megabytes

You are given a string S of length N, consisting of uppercase letters, and a small nonnegative integer K.

Please compute the number of strings T of length N, consisting of only uppercase letters, such that the longest common subsequence of S and T has length at least N - K. As the number could be large, print the number of such strings modulo $10^9 + 7$.

A string $S = s_1 s_2 \dots s_n$ is a subsequence of a string $T = t_1 t_2 \dots t_m$ if there exists an increasing sequence of indices $1 \le i_1 < i_2 < \dots < i_n \le m$ such that $s_x = t_{i_x}$ for all $1 \le x \le n$.

Input

The first line of the input contains the length-N string S ($1 \le |S| \le 50\,000$). All characters of S are uppercase letters.

The next line of the input contains the single integer K $(0 \le K \le 3)$.

Output

Print the number of such strings modulo $10^9 + 7$.

Examples

3
3
3
-
651976
4129308