The 2009 ACM Asia Programming Contest Wuhan Site sponsored by IBM hosted by Wuhan University

QCTI Intamational Co keglate
acm

Problem I
 In A Crazy City
 Input: in.in

I live in a crazy city full of crossings and bidirectional roads connecting them. On most of the days, there will be a celebration in one of the crossings, that's why I call this city crazy.

Everyday, I walk from my home (at crossing s) to my office (at crossing t). I don't like crowds, but I don't want to waste time either, so I always choose a shortest path among all possible paths that does not visit the crossing of the celebration. If no such path exists, I don't go to work (it's a good excuse, isn't it)!

In order to analyze this "celebration effect" in detail, I need n pairs of values $\left(l_{i}, c_{i}\right)$, where l_{i} is the length of the shortest path from crossing s to crossing t, not visiting crossing i, c_{i} is the number of such shortest paths (not visiting crossing i). Could you help me? Note that if I can't go to work when celebration is held at crossing i, define $l_{i}=c_{i}=0$. This includes the case when there is no path between s and t even if there's no celebration at all.

Ah, wait a moment. Please don't directly give me the values - that'll drive me crazy (too many numbers!). All I need is finding some interesting conclusions behind the values, but currently I've no idea what exactly I want.

Before I know what you should calculate, please prove that you can indeed find all the pairs $\left(l_{i}, c_{i}\right)$ by telling me the value of $f(x)=\left(l_{1}+c_{1} x+l_{2} x^{2}+c_{2} x^{3}+l_{3} x^{4}+c_{3} x^{5}+\ldots+l_{n} x^{2 n-2}+c_{n} x^{2 n-1}\right) \bmod 19880830$, for some given x.

Input

There will be at most 20 test cases. Each case begins with 5 integers $n, m, s, t, q(1 \leq s, t \leq n \leq 100,000,0 \leq m \leq 500,000$, $1 \leq q \leq 5$). n is the number of crossings, m is the number of roads and q is the number of queries. s and t are different integers that represent my home and office, respectively. Each of the following m lines describes a road with three integers: $u, v, w(1 \leq u, v \leq n, 1 \leq w \leq 10,000)$, indicating a bidirectional road connecting crossing u and crossing v, with length w. There may be multiple roads connecting the same pair of crossings, but a road cannot be connecting a crossing and itself. The next line contains q integers $x_{i}\left(1 \leq x_{i} \leq 10^{9}\right)$. The last test case is following by five zeros, which should not be processed.

Output

For each test case, print the case number and q integers $f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{q}\right)$ separated by a single space between consecutive items, on one line. Print a blank line after the output of each test case.

Sample Input

Output for the Sample Input

Case 1: 10132400
Case 2: 0

Explanation

In the first sample, $l_{1}=c_{1}=0, l_{2}=4, c_{2}=2, l_{3}=3, c_{3}=1, l_{4}=c_{4}=0$. In the second sample, everything is zero.

