Problem F. Random XOR

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 megabytes

There is an array a containing n integers. Also, there is initially empty array b. Some elements of a are going to be added to b. Each element is added with probability P independently from others. Then the value of s is to be computed:

$$
s=\oplus_{i=0}^{|b|} b_{i}
$$

where \oplus is bitwise exclusive OR (if the array b is empty, s equals to zero). You are required to compute the expected value of s^{2}.

Input

The first line of input contains three integers n, X and Y. The probability P is equal to $\frac{X}{Y}$.
The second line contains n integers a_{i} divided by spaces - elements of the array a.

$$
\begin{gathered}
1 \leq n \leq 10^{5} \\
0 \leq X<10^{9}+7 \\
0<Y<10^{9}+7 \\
X \leq Y \\
0 \leq a_{i}<10^{9}+7
\end{gathered}
$$

Output

The answer can be always represented as a fraction $\frac{u}{v}$ where u and v are co-prime numbers and $v \neq 0$ $\bmod \left(10^{9}+7\right)$ You are required to output only one number $-u \times v^{-1} \bmod \left(10^{9}+7\right)$

Example

| | standard input | | standard output |
| :--- | :--- | :--- | :--- | :--- |
| 3 1 2
 2 8 10 | 42 | | |

