Over the Hill, Part 1
 Problem ID: overthehill1

Hill encryption (devised by mathematician Lester S. Hill in 1929) is a technique that makes use of matrices and modular arithmetic. It is ideally used with an alphabet that has a prime number of characters, so we'll use the 37 character alphabet $A, B, \ldots, Z, 0,1, \ldots, 9$, and the space character. The steps involved are the following:

1. Replace each character in the initial text (the plaintext) with the substitution $\mathrm{A} \rightarrow 0, \mathrm{~B} \rightarrow 1, \ldots, \quad(\mathrm{space}) \rightarrow$ 36. If the plaintext is ATTACK AT DAWN this becomes

$$
0191902103601936302213
$$

2. Group these number into three-component vectors, padding with spaces at the end if necessary. After this step we have

$$
\left(\begin{array}{c}
0 \\
19 \\
19
\end{array}\right)\left(\begin{array}{c}
0 \\
2 \\
10
\end{array}\right)\left(\begin{array}{c}
36 \\
0 \\
19
\end{array}\right)\left(\begin{array}{c}
36 \\
3 \\
0
\end{array}\right)\left(\begin{array}{l}
22 \\
13 \\
36
\end{array}\right)
$$

3. Multiply each of these vectors by a predetermined 3×3 encryption matrix using modulo 37 arithmetic. If the encryption matrix is

$$
\left(\begin{array}{ccc}
30 & 1 & 9 \\
4 & 23 & 7 \\
5 & 9 & 13
\end{array}\right)
$$

then the first vector is transformed as follows:

$$
\begin{aligned}
\left(\begin{array}{ccc}
30 & 1 & 9 \\
4 & 23 & 7 \\
5 & 9 & 13
\end{array}\right)\left(\begin{array}{c}
0 \\
19 \\
19
\end{array}\right) & =\left(\begin{array}{cc}
(30 \times 0+1 \times 19+9 \times 19) & \bmod 37 \\
(4 \times 0+23 \times 19+7 \times 19) & \bmod 37 \\
(5 \times 0+9 \times 19+13 \times 19) & \bmod 37
\end{array}\right) \\
& =\left(\begin{array}{c}
5 \\
15 \\
11
\end{array}\right)
\end{aligned}
$$

4. After multiplying all the vectors by the encryption matrix, convert the resulting values back to the 37 -character alphabet and concatenate the results to obtain the encrypted ciphertext. In our example the ciphertext is FPLSFA4SUK2W9K3.

This method can be generalized to work with any $n \times n$ encryption matrix in which case the initial plaintext is broken up into vectors of length n. For this problem you will be given an encryption matrix and a plaintext and must compute the corresponding ciphertext.

Input

Input begins with a line containing a positive integer $n \leq 10$ indicating the size of the matrix and the vectors to use in the encryption. After this are n lines each containing n non-negative integers specifying the encryption matrix. After this is a single line containing the plaintext consisting only of characters in the 37 -character alphabet specified above.

Output

Output the corresponding ciphertext on a single line.

Sample Input 1

Sample Output 1

3		FPLSFA4SUK2W9K3	
30	1	9	
4	23	7	
5	9	13	
ATTACK AT DAWN			

Sample Input 2	Sample Output 2
6	W4QVBO0NJG5 Y76H5A6XHR11BV670Z
$\begin{array}{lllllll}26 & 11 & 23 & 14 & 13 & 16\end{array}$	
$\begin{array}{llllll}6 & 7 & 32 & 4 & 29 & 29\end{array}$	
$\begin{array}{lllllllll}26 & 19 & 30 & 10 & 30 & 11\end{array}$	
$\begin{array}{lllllll}6 & 28 & 23 & 5 & 24 & 23\end{array}$	
$\begin{array}{lllllllllllllllllll}6 & 24 & 1 & 27 & 20\end{array}$	
$\begin{array}{lllllll}13 & 9 & 32 & 18 & 20 & 18\end{array}$	
MY HOVERCRAFT IS FULL OF EELS	

