Problem J
 The Cross Covers Everything

Time Limit: 3 seconds

A cross-shaped infinite area on the $x-y$ plane can be specified by two distinct points as depicted on the figure below.

Figure J.1. The cross area specified by two points numbered 2 and 4

Given a set of points on the plane, you are asked to figure out how many pairs of the points form a cross-shaped area that covers all the points. To be more precise, when n points with coordinates $\left(x_{i}, y_{i}\right)(i=1, \ldots, n)$ are given, the ordered pair $\langle p, q\rangle$ is said to cover a point (x, y) if $x_{p} \leq x \leq x_{q}, y_{p} \leq y \leq y_{q}$, or both hold. Your task is to find how many pairs $\langle p, q\rangle$ cover all the n points. No two given points have the same x-coordinate nor the same y-coordinate.

Input

The input consists of a single test case of the following format.

$$
\begin{aligned}
& n \\
& x_{1} y_{1} \\
& \vdots \\
& x_{n} y_{n}
\end{aligned}
$$

The first line contains an integer $n\left(2 \leq n \leq 2 \times 10^{5}\right)$, which is the number of points given. Two integers x_{i} and y_{i} in the i-th line of the following n lines are the coordinates of the i-th point $\left(1 \leq x_{i} \leq 10^{6}, 1 \leq y_{i} \leq 10^{6}\right)$. You may assume that $x_{j} \neq x_{k}$ and $y_{j} \neq y_{k}$ hold for all $j \neq k$.

Output

Print in a line the number of ordered pairs of points that satisfy the condition.

4		4
2	1	
1	2	
6	3	
5	4	

Sample Input 2
 Sample Output 2

```
20
159
1 4 1 3
27
105
11 }1
138
9 3
812
64
1918
121
32
510
1811
419
2016
16 15
14
7
1720
```

Figure J. 1 depicts the cross specified by two points numbered 2 and 4, that are the second and the fourth points of the Sample Input 1. This is one of the crosses covering all the points.

Amendment

The conditions $x_{p} \leq x_{q}$, and $y_{p} \leq y_{q}$, have to be added to be satisfied for the the ordered pair $\langle p, q\rangle$ that are counted. This was announced during the contest.

