The 2021 ICPC Asia Macau Regional Contest 2022/04/03

Problem D. Shortest Path Fast Algorithm

Recently, BaoBao has learned the Shortest Path Fast Algorithm (SPFA, or more formally, Bellman-Ford-
Moore Algorithm) to solve the shortest path problem efficiently. He realizes that the algorithm looks so
similar to the Dijkstra’s algorithm after replacing the FIFO queue with priority queue, and shows you the
below pseudo code.

Algorithm 1 The Shortest Path Fast Algorithm

1: function SPFA(G, s) > (G is the given graph and s is the source vertex
2: Create vertex priority queue Q)

3: for each vertex v in G do

4: dist[v] < +o0 > Unknown distance from s to v
5: vis[v] « false > No vertex is in () at the beginning
6: end for

7: dist[s] < 0 > Initialize distance from s to s to be 0
8: Add s into @ with priority value 0

9: vis[s] < true
10: ent 0 > Number of times we poll the priority queue
11: while () is not empty do
12: Pick and remove best vertex u from @) > FExplained below
13: vislu| + false
14: ent <——cent 41
15: for each neighbor v of u in G do

16: d <« dist[u] + wy, > Wy, is the weight of edge connecting vertices u and v in G
17: if dist[v] > d then

18: dist[v] < d > Update dist[v] if d is better
19: if vis[v] is false then
20: Add v into @ with priority value d
21: vis[v] < true
22: end if
23: end if
24: end for
25: end while

26: end function

By picking the best vertex from @ we mean picking the vertex with the smallest priority value (in case
that multiple vertices have the smallest priority value, pick the vertex with the largest index among them).

You, the future computer scientist, find the BaoBao-modified SPFA algorithm works so slow in some
carefully construted graph. However, BaoBao is sure that his algorithm works well, unless you show him
a simple undirected graph that makes the variable cnt in the SPFA function no less than a certain k at
some time.

Just teach him a lesson!
Input

There is only one test case in each test file.

The first and only line of the input contains a single integer k& where k = 1 for the sample test case and
k = 10° for the only secret test case.

Output

Output several lines in the following format to describe the input data of a simple undirected graph that
makes the variable cnt in the SPFA function no less than k& at some time.

Page 6 of 14



The 2021 ICPC Asia Macau Regional Contest 2022/04/03

The first line contains two integers n (1 < n < 100) and m (0 < m < 103), indicating the number of
vertices and edges in the graph.

Then m lines follow, the i-th of which contains three integers u;, v; (1 < ug,v; < n) and w; (1 < w; < 109),
indicating that the i-th edge in the graph has a weight of w; and connects the u;-th and the v;-th vertices.

Note that a simple graph contains no self-loops and no multiple edges.

Example
standard input standard output
1 46
121
232
343
414
135
246
Note

For your convenience, you can copy the C++ code, which corresponds to the given pseudo code, from the
contest website. Save the code as spfa.cpp, use g++ spfa.cpp -02 -o spfa to compile it and you will
get an executable file named spfa. Run spfa, feed your output to its standard input and it will print out
the final value of cnt. Given the sample output it will print out 4, which means the sample output is not
sufficient to pass the secret test case.

Note that the given code does not check the validity of your output (for example it does not check if
your output is really a simple graph). You might still fail the test if your output is invalid, even if the
executable prints out a large value.

Page 7 of 14



