Problem B. MST

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
256 mebibytes

You are given an array $x_{1}, x_{2}, \ldots, x_{n}$.
Let's create an undirected graph on n vertices, which is initially empty.
After that, for each pair (u, v) such that $u<v$ let's add to the graph edge between vertices u and v with weight $x_{v}-x_{u}$.
Your goal is to find the weight of the minimum spanning tree in this graph.

Input

The first line of input contains one integer $t(1 \leq t \leq 300000)$: the number of test cases.
The first line of each test case contains one integer $n(1 \leq n \leq 300000)$: the number of integers in the given array. The next line of each testcase contains n space-separated integers $x_{1}, x_{2}, \ldots, x_{n}\left(-300000 \leq x_{i} \leq 300000\right)$: the given array.
It is guaranteed that the sum of n is at most 300000 .

Output

For each test case one integer: the weight of the minimum spanning tree in the described graph.

Example

		standard input		standard output	
2				4	
5				-35	
1	2	3	4	5	
3					
10	45	10			

