

Problem B. MST

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 mebibytes

You are given an array x_1, x_2, \ldots, x_n .

Let's create an undirected graph on n vertices, which is initially empty.

After that, for each pair (u, v) such that u < v let's add to the graph edge between vertices u and v with weight $x_v - x_u$.

Your goal is to find the weight of the minimum spanning tree in this graph.

Input

The first line of input contains one integer t $(1 \le t \le 300\,000)$: the number of test cases.

The first line of each test case contains one integer n $(1 \le n \le 300\,000)$: the number of integers in the given array. The next line of each testcase contains n space-separated integers x_1, x_2, \ldots, x_n $(-300\,000 \le x_i \le 300\,000)$: the given array.

It is guaranteed that the sum of n is at most $300\,000$.

Output

For each test case one integer: the weight of the minimum spanning tree in the described graph.

Example

standard input	standard output
2	4
5	-35
1 2 3 4 5	
3	
10 45 10	