Problem K. Number Theory

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 mebibytes

You are given a prime p.
For integer x, such that $0 \leq x<p$ let's call $f(x)$ the minimum non-negative integer a, such that there exists b, such that $\left(a^{2}+b^{2}\right) \bmod p=x$.
Your goal is to find $\max (f(0), f(1), \ldots, f(p-1))$.
It can be proved that for each prime p and each integer x you can find at least one pair a, b such that $\left(a^{2}+b^{2}\right)$ $\bmod p=x \bmod p$.

Input

The first line of input contains one integer $p\left(2 \leq p \leq 10^{5}\right)$.
It is guaranteed that p is prime.

Output

Print one integer: $\max (f(0), f(1), \ldots, f(p-1))$.

Examples

standard input	standard output
2	0
3	1
5	2
7	2

