Problem E. Spanning Tree Game

Input file: standard input
Output file: standard output
Memory limit: 512 megabytes

Alice and Bob are playing a game on an undirected graph with n vertices and m edges. The vertices are labeled by $1, 2, \ldots, n$. The edges are labeled by $1, 2, \ldots, m$. The i-th edge connects the u_i -th vertex and the v_i -th vertex directly, and its weight will be chosen from the given two values a_i and b_i .

First, Alice needs to assign weights to all the m edges such that there are exactly k edges whose weights are taken from a while the weights of other m-k edges are taken from b. Then, Bob needs to choose exactly n-1 edges from the graph such that every pair of different vertices are connected by these n-1 edges directly or indirectly.

The final score of the game is equal to the total weights of the n-1 edges chosen by Bob. Alice wants to maximize the score while Bob wants to minimize it. Please write a program to predict the final score for $k = 0, 1, 2, \ldots, m$ if both of the players play optimally.

Input

The first line contains a single integer T ($1 \le T \le 20$), the number of test cases. For each test case:

The first line contains two integers n and m ($2 \le n \le 9$, $n-1 \le m \le 30$), denoting the number of vertices and the number of edges.

Each of the following m lines contains four integers u_i, v_i, a_i and b_i $(1 \le u_i, v_i \le n, u_i \ne v_i, 1 \le a_i, b_i \le 1\,000\,000)$, describing an edge.

It is guaranteed that the graph is connected.

Output

For each test case, output m+1 lines, the *i*-th $(1 \le i \le m+1)$ of which containing an integer, denoting the final score when k=i-1.

Example

standard input	standard output
1	11
3 3 1 2 4 6	9
1 2 4 6	7
1 3 2 7	5
2 3 3 5	