Problem E. Spanning Tree Game

Input file:
Output file:
Memory limit:
standard input
standard output
512 megabytes

Alice and Bob are playing a game on an undirected graph with n vertices and m edges. The vertices are labeled by $1,2, \ldots, n$. The edges are labeled by $1,2, \ldots, m$. The i-th edge connects the u_{i}-th vertex and the v_{i}-th vertex directly, and its weight will be chosen from the given two values a_{i} and b_{i}.
First, Alice needs to assign weights to all the m edges such that there are exactly k edges whose weights are taken from a while the weights of other $m-k$ edges are taken from b. Then, Bob needs to choose exactly $n-1$ edges from the graph such that every pair of different vertices are connected by these $n-1$ edges directly or indirectly.
The final score of the game is equal to the total weights of the $n-1$ edges chosen by Bob. Alice wants to maximize the score while Bob wants to minimize it. Please write a program to predict the final score for $k=0,1,2, \ldots, m$ if both of the players play optimally.

Input

The first line contains a single integer $T(1 \leq T \leq 20)$, the number of test cases. For each test case:
The first line contains two integers n and $m(2 \leq n \leq 9, n-1 \leq m \leq 30)$, denoting the number of vertices and the number of edges.
Each of the following m lines contains four integers u_{i}, v_{i}, a_{i} and $b_{i}\left(1 \leq u_{i}, v_{i} \leq n, u_{i} \neq v_{i}\right.$, $1 \leq a_{i}, b_{i} \leq 1000000$), describing an edge.
It is guaranteed that the graph is connected.

Output

For each test case, output $m+1$ lines, the i-th $(1 \leq i \leq m+1)$ of which containing an integer, denoting the final score when $k=i-1$.

Example

			standard input		standard output
1			11		
3	3			9	
1	2	4	6		7
1	3	2	7		5
2	3	3	5		

