1004.Yet Another Easy Permutation Count Problem

Input file:	standard input
Output file:	standard output
Time limit:	15 seconds
Memory limit:	256 megabytes

Silver187 likes Permutation. For a permutation P of length n, a position $x(2 \leq x \leq n-1)$ is a good position if and only if $\forall 1 \leq i \leq x-1, P_{i}<P_{x}$, and $P_{x}>P_{x+1}$. In particular:

1. position 1 is a good position if and only if $P_{1}>P_{2}$ and $n \geq 2$.
2. position n can never be a good position.

Silver 187 wants to calculate the beauty value of a permutation P of length n. He defines a number S, initially $S=0$. Silver 187 will repeat the following operations for the permutation P until the permutation P is in ascending order.

1. Add to S the number of good positions in the current permutaion P.
2. Do a bubble sort on the permutation P (For each i from 1 to $n-1$ in order, if $P_{i}>P_{i+1}$, swap P_{i}, P_{i+1}).
S is the beautiful value of the permutation P.
Silver 187 gives you two numbers n and m. There are m constraints. Every constraint will give x and y, which means the inital number of position x is y. Find the sum of the beauty values of all permutations that satisfy all constraints modulo 998244353.

Input

The first line has one integer $T(1 \leq T \leq 100)$, indicating there are T test cases.
In each case:
The first line contains two integers $n\left(1 \leq n \leq 10^{6}\right), m(0 \leq m \leq n)$-the length of the permutation and the number of constraints.
The i-th line of the next m line contains two integers-the i-th constraint.
It is guaranteed that there is at least one permutation that satisfies all constraints.
Input guarantee $1 \leq \sum m \leq \sum n \leq 10^{7}$.

Output

In each case, output a single integer-the sum of the beautiful values of all permutations that satisfy the constraints modulo 998244353.

Example

	standard input		standard output
2		3	
3	1		13
1	2		
7	5		
4	5		
2	2		
6	7		
3	3	4	
1			

