1004.Yet Another Easy Permutation Count Problem

Input file:	standard input
Output file:	standard output
Time limit:	1.5 seconds
Memory limit:	256 megabytes

Silver187 likes Permutation. For a permutation P of length n, a position $x(2 \le x \le n-1)$ is a good position if and only if $\forall 1 \le i \le x - 1$, $P_i < P_x$, and $P_x > P_{x+1}$. In particular:

1. position 1 is a good position if and only if $P_1 > P_2$ and $n \ge 2$.

2. position n can never be a good position.

Silver187 wants to calculate the beauty value of a permutation P of length n. He defines a number S, initially S = 0. Silver187 will repeat the following operations for the permutation P until the permutation P is in ascending order.

1. Add to S the number of good positions in the current permutaion P.

2. Do a bubble sort on the permutation $P(For each i \text{ from 1 to } n-1 \text{ in order, if } P_i > P_{i+1}, \text{ swap } P_i, P_{i+1})$.

S is the beautiful value of the permutation P.

Silver187 gives you two numbers n and m. There are m constraints. Every constraint will give x and y, which means the initial number of position x is y. Find the sum of the beauty values of all permutations that satisfy all constraints modulo 998244353.

Input

The first line has one integer $T(1 \le T \le 100)$, indicating there are T test cases.

In each case:

The first line contains two integers $n(1 \le n \le 10^6)$, $m(0 \le m \le n)$ —the length of the permutation and the number of constraints.

The i-th line of the next m line contains two integers—the i-th constraint.

It is guaranteed that there is at least one permutation that satisfies all constraints.

Input guarantee $1 \le \sum m \le \sum n \le 10^7$.

Output

In each case, output a single integer—the sum of the beautiful values of all permutations that satisfy the constraints modulo 998244353.

Example

standard input	standard output
2	3
3 1	13
1 2	
7 5	
4 5	
2 2	
6 7	
3 3	
1 4	