Task: PIO
 Stone

XXV OI, Stage I. Source file pio.* Available memory: 128 MB.
A stone is located at the point $(0,0)$ of an infinite grid. The stone has exactly n possible moves, not necessarily unique, each described by a vector of integer coordinates. The stone can make each move at most once, and the moves it makes may be arranged in any order.

The goal is to reach a point as far (in the Euclidean distance) from the initial position as possible. How far is that?

Input

The first line of the standard input contains a single positive integer n that specifies the number of possible moves. Each of the n lines that follow contains two integers $x_{i}, y_{i}\left(-10^{4} \leq x_{i}, y_{i} \leq 10^{4}\right)$, separated by a single space, forming the vector $\left[x_{i}, y_{i}\right]$, which describes a possible move of the stone.

Output

Your program should print a single integer to the standard output, namely the square of the distance from $(0,0)$ to the furthest point that can be reached by the stone.

Example

For the following input data:
5
2 -2
$-2-2$
02
31
-31
the correct answer is:

26
Explanation for the example: The figure depicts an optimal solution which employs the moves given by the vectors $[0,2],[3,1]$, and $[2,-2]$. Another optimal solution consists of the moves $[0,2],[-3,1]$, and $[-2,-2]$.

Sample grading tests:

1ocen: $n=5$, the vectors are $[0,0],[1,0],[0,-1],[-1,0]$, and $[0,1]$;
2ocen: $n=100$, the vectors are $[i, j]$ for $i, j \in\{1,2, \ldots, 10\}$;
3ocen: $n=200000$, all vectors are $[-1,-1]$.

Grading

The set of tests consists of the following subsets. Within each subset, there may be several unit tests.

Subset	Property	Score
1	$n \leq 20$	15
2	$n \leq 2000$	45
3	$n \leq 200000$	40

