Task: PIO Stone

XXV OI, Stage I. Source file pio.* Available memory: 128 MB.

 $16.10 extsf{--} 13.11.2017$

A stone is located at the point (0,0) of an infinite grid. The stone has exactly n possible moves, not necessarily unique, each described by a vector of integer coordinates. The stone can make each move at most once, and the moves it makes may be arranged in any order.

The goal is to reach a point as far (in the Euclidean distance) from the initial position as possible. How far is that?

Input

The first line of the standard input contains a single positive integer n that specifies the number of possible moves. Each of the n lines that follow contains two integers x_i , y_i $(-10^4 \le x_i, y_i \le 10^4)$, separated by a single space, forming the vector $[x_i, y_i]$, which describes a possible move of the stone.

Output

Your program should print a single integer to the standard output, namely the square of the distance from (0,0) to the furthest point that can be reached by the stone.

Example

For the following input data: 4 5 3 2 -2 $\mathbf{2}$ -2 -2 5 0 2 1 Ċ 3 1 0 -3 1 -1 the correct answer is: $\mathbf{2}$ 50 1 3 4 6 26

Explanation for the example: The figure depicts an optimal solution which employs the moves given by the vectors [0, 2], [3, 1], and [2, -2]. Another optimal solution consists of the moves [0, 2], [-3, 1], and [-2, -2].

Sample grading tests:

10cen: n = 5, the vectors are [0, 0], [1, 0], [0, -1], [-1, 0], and [0, 1]; **20cen:** n = 100, the vectors are [i, j] for $i, j \in \{1, 2, ..., 10\}$; **30cen:** $n = 200\,000$, all vectors are [-1, -1].

Grading

The set of tests consists of the following subsets. Within each subset, there may be several unit tests.

Subset	Property	Score
1	$n \le 20$	15
2	$n \le 2000$	45
3	$n \le 200000$	40