Problem B. Tree

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	1024 mebibytes

We generate two rooted trees with n vertices in the following way.
The first tree is generated as follows:

1. Vertex 1 is the root of the tree.
2. For all $i \in[2, n]$, we select one vertex from $[1, i-1]$ as the father of i.

The second tree is generated as follows:

1. Vertex n is the root of the tree.
2. For all $i \in[1, n-1]$, we select one vertex from $[i+1, n]$ as the father of i.

A way to generate the trees is good if and only if every vertex i which is a leaf in tree 1 is not a leaf in tree 2 , and every vertex i which is not a leaf in tree 1 is a leaf in tree 2 . The root of every tree is not a leaf, regardless of the number of adjacent edges.
Now for all $n \in[2, N]$, calculate the number of good ways to generate trees. Two ways are considered different if and only if there exists a vertex i such that the parent of i in at least one tree is different in these two ways. You should output the answer modulo M.

Input

The first line of input contains two integers N and $M\left(2 \leq N \leq 500,10 \leq M \leq 2^{30}\right)$.

Output

Output $N-1$ lines: the answers for $n=2,3, \ldots, N$.

Example

standard input	standard output	
5998244353	1	
	2	
	12	
	120	

