Longest Unfriendly Subsequence

Let's call sequence $b_{1}, b_{2}, \ldots, b_{m}$ unfriendly, if the following condition holds:

- If $1 \leq i<j \leq m$ and $j-i \leq 2$, then $b_{i} \neq b_{j}$.

In other words, a sequence is unfriendly if any two elements on the distance at most 2 are different.

You are given a sequence $a_{1}, a_{2}, \ldots, a_{n}$. Find the length of its longest unfriendly subsequence.
A sequence c is a subsequence of a sequence d if c can be obtained from d by deletion of several (possibly, zero or all) elements. For example, $(1,3,5)$ is a subsequence of $(1,2,3,4,5)$ while $(3,1)$ is not.

Input

The first line contains a single integer $t\left(1 \leq t \leq 10^{5}\right)$ - the number of test cases. The description of test cases follows.

The first line of each test case contains a single integer $n\left(1 \leq n \leq 2 \cdot 10^{5}\right)$ - the length of the sequence.

The second line of each test case contains n integers $a_{1}, a_{2}, \ldots, a_{n}\left(1 \leq a_{i} \leq 10^{9}\right)$ - the elements of the sequence a.

It's guaranteed that the sum of n over all test cases doesn't exceed $2 \cdot 10^{5}$.

Output

For each test case, output a single integer - the length of the longest unfriendly subsequence of a.

Example

Input:

```
3
5
1 2 1 2 1
7
12 3 2 1 2 3
8
1 10 10 1 1 100 100 1
```

Output:

```
2
6
4
```


Note

In the first test case, the longest unfriendly subsequences are $(1,2)$ and $(2,1)$. The subsequence $(1,2,1)$, for example, is not unfriendly, as its 1 -st and 3 -rd elements are equal.

In the second test case, the longest unfriendly subsequence is $(1,2,3,1,2,3)$. It's clear that the subsequence which consists of the whole sequence is not unfriendly, so the answer is 6 .

In the third test case, the longest unfriendly subsequence is $(1,10,100,1)$.

Scoring

1. (3 points): $a_{i} \leq a_{i+1}$
2. (6 points): $n \leq 8$
3. (8 points): The sum of n over all test cases doesn't exceed 500
4. (10 points): $a_{i} \leq 3$
5. (10 points): $a_{i} \leq 10$
6. (20 points): The sum of n over all test cases doesn't exceed 10000
7. (43 points): No additional constraints
