Problem D
 Displacing Particles

A square has its vertices at the coordinates $(0,0),\left(0,2^{N}\right),\left(2^{N}, 2^{N}\right),\left(2^{N}, 0\right)$. Each vertex has an attractor. A particle is placed initially at position $\left(2^{N-1}, 2^{N-1}\right)$. Each attractor can be activated individually, any number of times. When an attractor at position (i, j) is activated, if a particle is at position (p, q), it will be moved to the midpoint between (i, j) and (p, q).

Given N and a point (x, y), calculate the least number of times you have to activate the attractors so that the particle ends up at position (x, y).

Input

The input consists of a single line containing three integers N, x and y, such that $1 \leq N \leq 20$ and $0<x, y<2^{N}$.

Output

Print a single line, containing the least number of times you have to active the attractors.

Input example 1 1 1 1	Output example 1

Input example 2	Output example 2
4124	1

Input example 3			
4	3	1	Output example 3
:---			

