Problem D

Displacing Particles

A square has its vertices at the coordinates $(0,0), (0,2^N), (2^N,2^N), (2^N,0)$. Each vertex has an attractor. A particle is placed initially at position $(2^{N-1},2^{N-1})$. Each attractor can be activated individually, any number of times. When an attractor at position (i,j) is activated, if a particle is at position (p,q), it will be moved to the midpoint between (i,j) and (p,q).

Given N and a point (x, y), calculate the least number of times you have to activate the attractors so that the particle ends up at position (x, y).

Input

The input consists of a single line containing three integers N, x and y, such that $1 \le N \le 20$ and $0 < x, y < 2^N$.

Output

Print a single line, containing the least number of times you have to active the attractors.

Output example 1
0
Output example 2
1
Output example 3
3