## Problem D. Money Game

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
1024 megabytes

Putata and Budada are organizing a game with $n$ players. Each player has some deposit, which is a real number. Player $i$ has $a_{i}$ deposits in the beginning. During each round of the game, the followings happen in order:

- Player 1 gives player 2 half of player 1's deposit.
- Player 2 gives player 3 half of player 2's deposit.
- ...
- Player $n-1$ gives player $n$ half of player $n-1$ 's deposit.
- Player $n$ gives player 1 half of player $n$ 's deposit.

The $n$ players played this game for exactly $2022^{1204}$ rounds. Putata wonders how much deposit each player has after the game. Please write a program to answer his question.

## Input

The first line contains an integer $n\left(2 \leq n \leq 10^{5}\right)$, denoting the number of players.
The second line contains $n$ integers $a_{1}, a_{2}, \ldots, a_{n}\left(1 \leq a_{i} \leq 10^{6}\right)$, denoting the deposit player $i$ has in the beginning.

## Output

Output one line with $n$ real numbers, denoting the deposit each player has after they played this game.
Your answer will be considered correct if its absolute or relative error does not exceed $10^{-6}$. Formally, let your answer be $a$, and the jury's answer be $b$. Your answer will be considered correct if $\frac{|a-b|}{\max (1,|b|)} \leq 10^{-6}$.

## Example

| standard input | standard output |
| :--- | :--- | :--- |
| 42 | 4.002 .00 |

## Note

During one round, the deposit they have changed as follows: $[4,2] \rightarrow[2,4] \rightarrow[4,2]$. Their deposit does not change after this round, so the answer is the same as the input.

