Problem F
 Carny Magician
 Time limit: 1 second

Charles and Ada are watching a magician shuffling a deck of thirteen numbered cards, which were originally ordered. The magician spreads the cards out on the table.

Ada exclaims, "Odd; ten of the cards are in their original locations!"
Charles thinks for a moment, and says, "Not only that, but it is the forty-second such ordering!"
Can you figure out the order of the cards? Formally, the magician's cards can be considered as a permutation $p_{1}, p_{2}, \ldots, p_{n}$, that contains each number from 1 to n exactly once. The number of fixed points is the number of indices i such that $p_{i}=i$.

Given three numbers n, m, and k, find the k th lexicographically smallest permutation of size n that has exactly m fixed points.

Input

The input will be a single line containing the three integers n, m, and k, with $0 \leq m \leq n, 1 \leq n \leq 50$, and $1 \leq k \leq 10^{18}$.

Output

On a single line, write the permutation as a sequence of n space-separated integers. If there are fewer than k permutation satisfying the conditions, then print -1 on a single line.

ICPC Pacific Northwest Regional Contest

Examples

Sample Input 1	Sample Output 1	
31	1	132

Sample Input 2			Sample Output 2
321	-1		

Sample Input 3

Sample Output 3

5	3	7	2	1	3	4	5

