

ICPC Pacific Northwest Regional Contest

Problem F Carny Magician Time limit: 1 second

Charles and Ada are watching a magician shuffling a deck of thirteen numbered cards, which were originally ordered. The magician spreads the cards out on the table.

Ada exclaims, "Odd; ten of the cards are in their original locations!"

Charles thinks for a moment, and says, "Not only that, but it is the forty-second such ordering!"

Can you figure out the order of the cards? Formally, the magician's cards can be considered as a permutation p_1, p_2, \ldots, p_n , that contains each number from 1 to n exactly once. The number of fixed points is the number of indices i such that $p_i = i$.

Given three numbers n, m, and k, find the kth lexicographically smallest permutation of size n that has exactly m fixed points.

Input

The input will be a single line containing the three integers n, m, and k, with $0 \le m \le n$, $1 \le n \le 50$, and $1 \le k \le 10^{18}$.

Output

On a single line, write the permutation as a sequence of n space-separated integers. If there are fewer than k permutation satisfying the conditions, then print -1 on a single line.

ICPC Pacific Northwest Regional Contest

Examples

Sample Input 1	Sample Output 1
3 1 1	1 3 2

Sample Input 2	Sample Output 2
3 2 1	-1

Sample Input 3	Sample Output 3
5 3 7	2 1 3 4 5