Problem C. Courses

Input file:	standard input
Output file:	standard output
Time limit:	15 seconds
Memory limit:	1024 mebibytes

Little Misha wants to change his IQ (initially he has 0 IQ). He found m types of courses on the internet. The i-th course type costs c_{i} bitcoins, changes his IQ by d_{i} (d_{i} can be negative, that is, his IQ can decrease after a course), and there are n_{i} different courses of i-th type. Authors of courses want to earn money, so $c_{i} \geq\left|d_{i}\right|$.
Misha wants to reach at least k IQ (of course, k can be negative). In order to achieve his goal, he will take a single course every day till some day. A course could be taken multiple times and each time it will affect Misha's IQ.
Now, he has n bitcoins. He is wondering: in how many ways can he spend exactly t bitcoins and reach at least k IQ in the end, for each $1 \leq t \leq n$? Two ways are considered different if they differ in the number of days to study or in a course taken at some day (different courses of the same type are considered different as well).

Input

The first line contains a single integer $m(0<m<100)$: the number of types of courses.
Each of the next m lines contains three integers $c_{i}, d_{i}, n_{i}\left(0<c_{i}<10,\left|d_{i}\right| \leq c_{i}, 0 \leq n_{i} \leq 10^{4}\right)$.
And finally, the last line contains two integers n and $k\left(|k| \leq n \leq 3 \cdot 10^{4}, n>0\right)$.

Output

Output n integers, each on a separate line. The number on the i-th line should be the number of ways to spend exactly i bitcoins and obtain at least k IQ. Since these numbers can be large, output them modulo 998244353.

Examples

	standard input	standard output	
1	2	2	4
5	2	8	
		16	
		32	
2	-1	1	0
1	1	2	4
4	2	8	

