

Problem C. Courses

Input file:	standard input
Output file:	standard output
Time limit:	15 seconds
Memory limit:	1024 mebibytes

Little Misha wants to change his IQ (initially he has 0 IQ). He found m types of courses on the internet. The *i*-th course type costs c_i bitcoins, changes his IQ by d_i (d_i can be negative, that is, his IQ can decrease after a course), and there are n_i different courses of *i*-th type. Authors of courses want to earn money, so $c_i \ge |d_i|$.

Misha wants to reach at least k IQ (of course, k can be negative). In order to achieve his goal, he will take a single course every day till some day. A course could be taken multiple times and each time it will affect Misha's IQ.

Now, he has n bitcoins. He is wondering: in how many ways can he spend exactly t bitcoins and reach at least k IQ in the end, for each $1 \le t \le n$? Two ways are considered different if they differ in the number of days to study or in a course taken at some day (different courses of the same type are considered different as well).

Input

The first line contains a single integer m (0 < m < 100): the number of types of courses.

Each of the next m lines contains three integers c_i , d_i , n_i $(0 < c_i < 10, |d_i| \le c_i, 0 \le n_i \le 10^4)$.

And finally, the last line contains two integers n and $k \ (|k| \le n \le 3 \cdot 10^4, n > 0)$.

Output

Output n integers, each on a separate line. The number on the *i*-th line should be the number of ways to spend exactly *i* bitcoins and obtain at least k IQ. Since these numbers can be large, output them modulo 998 244 353.

Examples

standard input	standard output
1	0
1 1 2	4
5 2	8
	16
	32
2	0
1 -1 1	4
1 1 2	8
4 2	48