

Problem A. Maximum Bitwise OR

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 megabytes

You have an array A with N integers A[1], A[2], ...A[N]. You are given Q queries. Each query consists of two integers L and R. Consider a new array B of length R - L + 1, such that B[i] = A[L + i - 1] for all $1 \le i \le R - L + 1$. In one move, you can do the following in order:

- 1. Choose an index j such that $1 \leq j \leq R-L+1$
- 2. Choose an integer *i* satisfying $2^i \leq B[j]$
- 3. Replace B[j] with $B[j] \oplus (B[j] 2^i)$, where \oplus denotes the bitwise-xor operator.

The answer for the query is the maximum possible bitwise OR of all values in B, and the minimum number of moves required to obtain this value.

Input

The first line contains T, the number of testcases. Then the testcases follow.

The first line of each testcase contains two integers, N and Q.

The second line contains N space separated integers A[1], A[2], ..A[N].

Each of the next Q lines contains two space separated integers L and R.

Constraints

- $1 \le T \le 10^5$
- $1 \le N \le 10^5$
- $1 \le Q \le 10^5$
- $0 \le A[i] \le 10^9$
- $1 \le L \le R \le N$
- The sum of N over all testcases doesn't exceed 10^5
- The sum of Q over all test cases doesn't exceed 10^5

Output

For each test case print Q lines, each line should contain 2 space separated integers, denoting maximum possible OR and the minimum number of moves required.

Example

standard input	standard output
1	15 2
3 2	15 0
10 10 5	
1 2	
1 3	