Data Structure

Input file:	standard input
Output file:	standard output
Time limit:	15 seconds
Memory limit:	512 megabytes

Andy is a famous data structure expert at Nanjing University second to none. One day he throws a plain dry data structure problem to his friends, but none of them can solve. How about you?
Given a tree rooted at node 1 . Each node has a weight which is 0 initially. Define the distance between two nodes as the number of edges in the unique simple path between the two nodes. You need to perform these two types of operations:

- Type 1: given a, x, y, z, add z to the weights of all a 's descendants (including a itself) whose distances to a are y modulo x;
- Type 2: given a, return the weight of node a.

Input

The first line of the input is a single integer $T(1 \leq T \leq 4)$, the number of test cases.
Each test cases starts with two integers n, $m(1 \leq n, m \leq 300000)$, denoting that there are n nodes (numbered 1 through n) in the tree and you need to perform m operations. The next line contains $n-1$ integers, $f_{1}, f_{2}, \cdots, f_{n-1}\left(1 \leq f_{i} \leq i\right)$, specifying the edges of the trees; the i th integer denotes the parent of node $i+1$. The next m lines describe the operations. Each line is either 1 a x y z $(1 \leq a \leq n, 1 \leq x \leq n, 0 \leq y<x, 0 \leq z \leq 500)$, denoting an operation of type 1 , or 2 a $(1 \leq a \leq n)$, denoting an operation of type 2 .

Output

For each operation of type 2 in each test case, print the answer in one line.

Example

				standard input		standard output		
1								
5	5							
1	1	2	1					
1	1	5	4	1				
1	1	4	1	5				
1	2	1	0	4				
2	3							
2	1							

