Just Some Bad Memory

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	1024 megabytes

Relax. Let me tell you in the fastest pace what you need to do.
Give you a simple graph $G=(V, E)$ consisting of undirected edges. You need to tell me, what is the minimum number of edges should you add to the graph, resulting a simple graph containing at least one odd cycle and at least one even cycle.

A simple graph is a graph without multiple edges and self-loops, which means that each edge connects two different vertices and no two edges connect the same pair of vertices.
A cycle is a sequence of distinct vertices $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$, such that $\left(v_{i}, v_{i \bmod k+1}\right) \in E$. The odd or even describes the parity of k. A smallest odd cycle is of length 3 , and a smallest even cycle is of length 4 .

Input

The first line contains two integers $n, m\left(1 \leq n \leq 10^{5}, 0 \leq m \leq \min \left\{2 \times 10^{5},\binom{n}{2}\right\}\right)$, denoting the number of vertices $(|V|)$ and the number of edges $(|E|)$.
In the next m lines, each line contains two integers $u, v(1 \leq u, v \leq n, u \neq v)$, denoting that there are edges connecting vertices u and v.
It's guaranteed that the input graph is a simple graph.

Output

Print one integer in a single line, denoting your answer. If the mission is impossible, print ' -1 ' instead.

Examples

	standard input	
3	3	standard output
1	2	
2	3	-1
1	3	
4	0	5
5	4	
1	2	2
2	3	
3	4	
4	5	
4	6	
1	2	
1	3	
1	4	
2	3	
2	4	
3	4	
4	4	
1	2	
2	3	4
3	4	1

Note

Here is one possible solution of sample 2. The contained odd cycles are $\{1,2,3\}$ and $\{1,3,4\}$, and the only even cycle is $\{1,2,3,4\}$.

