Problem A. Magma Cave

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
12 seconds
512 megabytes

Little Q is researching an active volcano. There are n caves inside the volcano, labeled by $1,2, \ldots, n$. At the very beginning, before the first volcanic activity event, there is no magma path between these caves. You will be given q operations, each operation is one of the following:

- "1 uvw" $(1 \leq u, v \leq n, u \neq v, 1 \leq w \leq q)$: A volcanic activity event comes such that a new magma path between the u-th cave and the v-th cave occurs, whose length is w. Here w is used for identifying the magma path, so w will always be pairwise different.
- " $2 k w$ " $(1 \leq k<n, 1 \leq w \leq q)$: Assume it is a undirected graph with n vertices, each magma path denoting an edge, Little Q is wondering whether there exists a spanning tree whose k-th shortest edge is of length w. You are the partner of Little Q, please write a program to answer his question.

Input

The first line contains a single integer $T(1 \leq T \leq 100)$, the number of test cases. For each test case:
The first line contains two integers n and $q(2 \leq n \leq 50000,1 \leq q \leq 200000)$, denoting the number of caves and the number of operations.
Each of the next q lines describes an operation in formats described in the statement above.
It is guaranteed that the sum of all n is at most 300000 , and the sum of all q is at most 1000000 .

Output

For each question, print a single line. If it is possible, print "YES", otherwise print "NO".

Example

standard input				
2				standard output
3	7			NO
1	1	2	1	
2	1	1		YES
1	2	3	5	
1	1	3	4	
2	2	4		YES
2	2	5		YES
2	2	3		
2	4			
1	1	2	1	
1	1	2		
2	1			
2	1	2		

