Problem J. Border Queries

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 512 megabytes

Given a string S of length n consisting of lowercase English letters. A partition of S into three non-empty substrings s_1, s_2, s_3 is considered good if and only if s_1 is the border of $s_1 + s_2$ and s_3 is the border of $s_2 + s_3$. We say a string s good if and only if s is a substring of S and there exists a good partition of S into s_1, s_2, s_3 such that $s_2 = s$.

Define the value of a string as the number of its good substrings. Two substrings are considered different if and only if the start position is different or the end position is different.

Given a string T of length m consisting of lowercase English letters and q queries. In each query, you are given two integers l, r. You need to calculate the value of $T[l \cdots r]$.

Input

Each test contains multiple test cases. The first line contains an integer T ($1 \le T \le 60$) denoting the number of test cases.

For each test case, the first line contains three integers n, m, q ($3 \le n \le 10^6, 1 \le m, q \le 10^6$).

The second line contains a string S of length n.

The third line contains a string T of length m.

The next q lines each contains two integers l_i and r_i , denoting a query $(1 \le l_i \le r_i \le m)$.

It is guaranteed that $\sum n, \sum m, \sum q$ over all test cases does not exceed 10^6 .

Output

For each query, output one line with an integer denoting the answer.

Please do not output trailing spaces.

Example

standard input	standard output
1	0
7 7 2	2
abacaba	
cabacab	
1 4	
3 7	