Problem J. Border Queries

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
512 megabytes

Given a string S of length n consisting of lowercase English letters. A partition of S into three non-empty substrings s_{1}, s_{2}, s_{3} is considered good if and only if s_{1} is the border of $s_{1}+s_{2}$ and s_{3} is the border of $s_{2}+s_{3}$. We say a string s good if and only if s is a substring of S and there exists a good partition of S into s_{1}, s_{2}, s_{3} such that $s_{2}=s$.

Define the value of a string as the number of its good substrings. Two substrings are considered different if and only if the start position is different or the end position is different.
Given a string T of length m consisting of lowercase English letters and q queries. In each query, you are given two integers l, r. You need to calculate the value of $T[l \cdots r]$.

Input

Each test contains multiple test cases. The first line contains an integer $T(1 \leq T \leq 60)$ denoting the number of test cases.
For each test case, the first line contains three integers $n, m, q\left(3 \leq n \leq 10^{6}, 1 \leq m, q \leq 10^{6}\right)$.
The second line contains a string S of length n.
The third line contains a string T of length m.
The next q lines each contains two integers l_{i} and r_{i}, denoting a query ($1 \leq l_{i} \leq r_{i} \leq m$).
It is guaranteed that $\sum n, \sum m, \sum q$ over all test cases does not exceed 10^{6}.

Output

For each query, output one line with an integer denoting the answer.
Please do not output trailing spaces.

Example

standard input	standard output
1	0
772	2
abacaba	
cabacab	
14	
37	

