Problem A. Rikka with Intersections of Paths

Input file: standard input
 Output file: standard output
 Time limit: 6 seconds
 Memory limit: 1024 megabytes

Rikka has a tree T with n vertices numbered from 1 to n.
Meanwhile, Rikka has marked m simple paths in T, the i-th of which is between the vertices x_{i} and y_{i}, where some of them could be the same path.
Now, Rikka wants to know in how many different strategies she can select k paths from the marked paths such that those selected paths share at least one common vertex.

Input

The input contains several test cases, and the first line contains a single integer $T(1 \leq T \leq 200)$, the number of test cases.

For each test case, the first line contains three integers $n\left(1 \leq n \leq 3 \times 10^{5}\right)$, the size of the tree T, m $\left(2 \leq m \leq 3 \times 10^{5}\right)$, the number of marked paths, and $k(2 \leq k \leq m)$.

The following $(n-1)$ lines describe the tree T. Each of them contains two integers u and $v(1 \leq u, v \leq n$, $u \neq v$), representing an edge between the vertices u and v.
The following m lines describe all marked simple paths in the tree. The i-th of them contains two integers x_{i} and $y_{i}\left(1 \leq x_{i}, y_{i} \leq n\right)$.
The input guarantees that the sum of n and the sum of m in all test cases are at most 2×10^{6} respectively.

Output

For each test case, output a single line with a single integer, the number of different strategies meeting the requirement modulo $\left(10^{9}+7\right)$.

Example

	standard input		
1		10	
3	6	2	
1	2		
1	3		
1	1		
2	2		
3	3		
1	2		
1	3		
2	3		

