Problem A. Rikka with Intersections of Paths

Input file: standard input
Output file: standard output

Time limit: 6 seconds

Memory limit: 1024 megabytes

Rikka has a tree T with n vertices numbered from 1 to n.

Meanwhile, Rikka has marked m simple paths in T, the i-th of which is between the vertices x_i and y_i , where some of them could be the same path.

Now, Rikka wants to know in how many different strategies she can select k paths from the marked paths such that those selected paths share at least one common vertex.

Input

The input contains several test cases, and the first line contains a single integer T ($1 \le T \le 200$), the number of test cases.

For each test case, the first line contains three integers n $(1 \le n \le 3 \times 10^5)$, the size of the tree T, m $(2 \le m \le 3 \times 10^5)$, the number of marked paths, and k $(2 \le k \le m)$.

The following (n-1) lines describe the tree T. Each of them contains two integers u and v $(1 \le u, v \le n, u \ne v)$, representing an edge between the vertices u and v.

The following m lines describe all marked simple paths in the tree. The i-th of them contains two integers x_i and y_i $(1 \le x_i, y_i \le n)$.

The input guarantees that the sum of n and the sum of m in all test cases are at most 2×10^6 respectively.

Output

For each test case, output a single line with a single integer, the number of different strategies meeting the requirement modulo $(10^9 + 7)$.

Example

standard input	standard output
1	10
3 6 2	
1 2	
1 3	
1 1	
2 2	
3 3	
1 2	
1 3	
2 3	