Problem A. Rainbow Graph

Input file:	standard input
Output file:	standard output
Time limit:	10 seconds
Memory limit:	1024 megabytes

A graph without loops or multiple edges is known as a simple graph.
A vertex-colouring is an assignment of colours to each vertex of a graph. A proper vertex-colouring is a vertex-colouring in which no edge connects two identically coloured vertices.

A vertex-colouring with n colours of an undirected simple graph is called an n-rainbow colouring if every colour appears once, and only once, on all the adjacent vertices of each vertex. Note that an n-rainbow colouring is not a proper colouring, since adjacent vertices may share the same colour.

An undirected simple graph is called an n-rainbow graph if the graph can admit at least one legal n rainbow colouring. Two n-rainbow graphs G and H are called isomorphic if, between the sets of vertices in G and H, a bijective mapping $f: V(G) \rightarrow V(H)$ exists such that two vertices in G are adjacent if and only if their images in H are adjacent.
Your task in this problem is to count the number of distinct non-isomorphic n-rainbow graphs having $2 n$ vertices and report that number modulo a prime number p.

Input

The input contains several test cases, and the first line contains a positive integer T indicating the number of test cases which is up to 1000 .
For each test case, the only line contains two integers n and p where $1 \leq n \leq 64, n+1 \leq p \leq 2^{30}$ and p is a prime.
We guarantee that the numbers of test cases satisfying $n \geq 16, n \geq 32$ and $n \geq 48$ are no larger than 200, 100 and 20 respectively.

Output

For each test case, output a line containing "Case \#x: y" (without quotes), where x is the test case number starting from 1 , and y is the answer modulo p.

Example

standard input	standard output
5	Case \#1: 1
1	11059
2	729557
3	1461283
45299739	Case \#2: 1
6349121057	Case \#3: 2

Note

If you came up with a solution such that the time complexity is asymptotic to $p(n)$, the number of partitions of n, or similar, you might want to know $p(16)=231, p(32)=8349, p(48)=147273$ and $p(64)=1741630$.

The following figures illustrate all the non-isomorphic rainbow graphs mentioned in the first four sample cases.

Figure 1: the non-isomorphic 1-rainbow graph with 2 vertices

Figure 2: the non-isomorphic 2-rainbow graph with 4 vertices

Figure 3: the non-isomorphic 3-rainbow graphs with 6 vertices

Figure 4: the non-isomorphic 4-rainbow graphs with 8 vertices

