Problem A. Connected Subgraphs

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
12 seconds
1024 megabytes

An algorithm master in graph theory would never endure any disconnected subgraph.
An esthetician would only consider edge-induced subgraphs as necessary subgraphs.
An OCD patient would always choose a subgraph from a given simple undirected graph randomly.
Those are why Picard asks you to calculate, for choosing four different edges from a given simple undirected graph with equal probability among all possible ways, the probability that the edge-induced subgraph formed by chosen edges is connected. Here we say a subset of edges in the graph together with all vertices that are endpoints of edges in the subset form an edge-induced subgraph.
To avoid any precision issue, Picard denotes the probability as p and the number of edges as m, and you should report the value $\left(p \cdot\binom{m}{4}\right) \bmod \left(10^{9}+7\right)$. It is easy to show that $p \cdot\binom{m}{4}$ is an integer.

Input

The input contains several test cases, and the first line contains a positive integer T indicating the number of test cases which is up to 10 .
For each test case, the first line contains two integers n and m indicating the numbers of vertices and edges in the given simple undirected graph respectively, where $4 \leq n \leq 10^{5}$ and $4 \leq m \leq 2 \times 10^{5}$.
The following m lines describe all edges of the graph, the i-th line of which contains two integers u and v which represent an edge between the u-th vertex and the v-th vertex, where $1 \leq u, v \leq n$ and $u \neq v$.
We guarantee that the given graph contains no loops or multiple edges.

Output

For each test case, output a line containing an integer corresponding to the value $\left(p \cdot\binom{m}{4}\right) \bmod \left(10^{9}+7\right)$, where p indicates the probability which you are asked to calculate.

Example

	standard input	
2		1
4	4	standard output
1	2	
2	3	
3	4	
4	1	
4	6	
1	2	
1	3	
1	4	
2	3	
2	4	

