Sheep Village

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
512 megabytes

There is an old country but called Sheep Village which contains n cities numbered from 1 to n and m bidirectional roads, each of which connects two different cities.
In Sheep Village, cities are connected through roads. That is, you can always find a path from a city to any other city through some roads. Besides, each road here belongs to at most one simple circuit, where a simple circuit is a set of roads that forms a cyclic path $u_{1} \rightarrow u_{2} \rightarrow \ldots \rightarrow u_{m} \rightarrow u_{1}(m \geq 1)$ without passing a city more than once. Note that the cyclic paths $a \rightarrow b \rightarrow c \rightarrow a, b \rightarrow c \rightarrow a \rightarrow b$ and $a \rightarrow c \rightarrow b \rightarrow a$ correspond to the same circuit.
There are k sheep living in Sheep Village and also k lurking wolves. Once all sheep fall asleep, the lurking wolves, led by the wolf king, will launch a blitzkrieg for their static prey. Quietly running through a road does cost energy. For the sake of energy-saving, the wolf king hopes for the best assignments for each wolf to catch a distinct sheep such that the total energy consumed in catching sheep is as small as possible.

As a brilliant strategist as well as a wolf, it's time for you to make the decision to meet the king's requirement.

Input

The first line contains three integers n, m and $k\left(2 \leq n \leq 10^{5}, n-1 \leq m \leq 2 n-2,1 \leq k \leq 10^{5}\right)$, indicating the number of cities in Sheep Village, the number of roads between cities, and the total number of sheep (or wolves) respectively.
The second line contains k integers, of which the i-th number $a_{i}\left(1 \leq a_{i} \leq n\right)$ indicates the i-th wolf is lurking in the city numbered a_{i}.
The third line contains k integers, of which the i-th number $b_{i}\left(1 \leq b_{i} \leq n\right)$ indicates the i-th sheep is sleeping in the city numbered b_{i}. Some sheep and wolves may live in a city together.
In the next m lines, each line contains three integers u, v and $w\left(1 \leq u, v \leq n, u \neq v, 1 \leq w \leq 10^{5}\right)$ representing a bidirectional road connecting the cities numbered u and v that costs w energy for an individual wolf running through it quietly. There may exist more than one road between any two cities.

Output

Output an integer in a line representing the minimum total energy consumed.

Example

		standard input		standard output
5	8	4		8
2	2	3	3	
4	4	5	5	
1	2	1		
2	1	1		
1	3	1		
3	1	1		
1	4	1		
4	1	1		
1	5	1		
5	1	1		

