## Problem A. Equanimous

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
256 megabytes

Alice, Bob and Eve are playing a game on craft papers. Every time Eve shows a natural number, Alice and Bob should write the number (in the decimal representation) on their own papers, add a plus sign or a minus sign before each digit, and then evaluate the arithmetic expression he or she has wrote. The one with the lower absolute value of his or her expression wins. If their absolute values are the same, it will cause a draw and they need to play one more time.
Actually, the game will never end if they are smart enough, so after a while, they turn to focus on the optimal solution of the puzzle game. Let $f(m)$ be the minimal absolute value that can be built from $m$. They are wondering if you can help them determine $f(m)$ for every integer $m$ satisfying $l \leq m \leq r$.
Wait. After realizing your perfect programming skill, they decided to make a puzzle for you as well. They have set several questions $(l, r)$ for you, and your task is to find the sum of all the integers $m$ between $l$ and $r$ (inclusive) satisfying $f(m)=k$ for $k=0,1,2, \ldots, 9$ and report the answer modulo $\left(10^{9}+7\right)$.

## Input

The first line contains one integer $n\left(1 \leq n \leq 10^{4}\right)$ indicating the number of questions.
Each of the next $n$ lines contains two integers $l$ and $r\left(1 \leq l \leq r \leq 10^{100}\right)$ representing a question.

## Output

For each question, output ten space-separated integers in one line, where the $i$-th integer indicates the sum of all the integers $m$, satisfying that $l \leq m \leq r$ and $f(m)=i$, modulo $\left(10^{9}+7\right)$.

## Example

|  | standard input |
| :---: | :---: |
|  | 7 |
|  | 110 |
|  | 1150 |
|  | 51100 |
|  | 101500 |
|  | 5011000 |
|  | 1926081719260818 |
|  | 12345678901234567891234567890987654321 |
|  | standard output |
|  | 01123456789 |
|  |  |
|  | 38577057949742431030624317190 |
|  | 19080346662731219047106155490259410972990 |
|  | 436958100567134559624628935085238721392463851899 |
|  | 19260817192608180000000 |
|  | 23083351974935190800000000 |

## Note

The digits of 19260817 in the decimal representation are $\{1,9,2,6,0,8,1,7\}$, which can build an arithmetic expression $(+1-9-2-6+0+8+1+7)$, whose value and abosolute value are 0 .

The digits of 19260818 in the decimal representation are $\{1,9,2,6,0,8,1,8\}$, which can build an arithmetic expression $(+1-9+2+6-0-8-1+8)$, whose value is -1 and aboslute value is 1 .

