Contest of Big Data

China ICPC Winter Training Camp, Febraury 3, 2015

Problem C. Nearest friend

Input file:	stdin
Output file:	stdout
Time limit:	1 second
Memory limit:	512 megabytes

In the country there are n houses connected by m bidirected roads. Distance between two houses is the length of shortest path between them.
There are k bobo living in the houses. For each bobo, find another bobo living nearest to him.

Input

The first line contains 3 integers $n, m, k(2 \leq n \leq 200000, n-1 \leq m \leq 200000,2 \leq k \leq n)$.
The houses are conveniently labeled by $1,2, \ldots, n$.
Each of the following m lines contains 3 integers a_{i}, b_{i}, c_{i}, which denotes a road between houses a_{i} and b_{i} with length $c_{i}\left(1 \leq a_{i}, b_{i} \leq n, 1 \leq c_{i} \leq 10000\right)$.

The last line contains k integers $v_{1}, v_{2}, \ldots, v_{k}$, where v_{i} denotes the house the i-th bobo lives in $\left(1 \leq v_{i} \leq n\right)$.
It is guaranteed that every two houses can reach each other, and no two bobo live in the same house.

Output

For each bobo, a single integer denotes the house where the nearest bobo lives. If there are multiple such bobo, find the house with the smallest label.

Sample input and output

	stdin	
4	3	3
1	2	1
2	3	1
3	4	1
2	3	4

