Problem F. Planar graph connectivity

Input file:	stdin
Output file:	stdout
Time limit:	2 seconds
Memory limit:	512 megabytes

bobo has a connected planar graph with n vertices.
He subsequently presents q questions of the following 2 types:

- $-a_{i} b_{i}$-Remove the edge between vertices a_{i} and b_{i}, and ask for the number of connected components.
- ? $a_{i} b_{i}$ - Ask if vertices a_{i} and b_{i} are connected.

Answer his questions.

Input

The first line contains 2 integers $n, q(1 \leq n \leq 100000,1 \leq q \leq 200000)$.
Vertices are numbered by $1,2, \ldots, n$ for convenience.
Each of the following n lines starts with an integer k_{i} which denotes the number of neighbors of vertex i, followed by k_{i} integers $v_{i, 1}, v_{i, 2}, \ldots, v_{i, k_{i}}$ which denote the neighbors, ordered in clockwise direction $\left(0 \leq k_{i} \leq n-1,1 \leq v_{i, j} \leq n\right)$.
The following q lines denote the questions.
Note that the numbers (in the questions) are encoded. If the answer of the last question is last, then number x appears as $x \oplus$ last. (Assume last $=0$ at the beginning. " \oplus " denotes bitwise exclusive-or.)

Output

For the first type of questions, a single integer denotes the number of components.
For the second type of questions, " 1 " for connected and " 0 " for disconnected.

Sample input and output

	stdin		stdout
4	3		1
3	2	3	4
2	1	4	2
1	1		0
2	1	2	
-	1	2	
-	0	2	
$?$	3	1	

