Chessboard

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	64 megabytes

Bobo had a chessboard with n rows and m columns. Rows are numbered by $1, 2, \ldots, n$ from top to bottom, and columns are numbered by $1, 2, \ldots, m$ from left to right. Cells are colored into black or white initially.

Bobo might perform q operations. The *i*-th operation changed the color (from black to white or vice versa) of the cell in the intersection of the x_i -th row and y_i -th column. He would like to know the number of connected components after each operation.

Note that cells s and t are in the same connected component if there exist cells $c_0 = s, c_1, \ldots, c_k = t$ for some k where cells c_{i-1} and c_i $(1 \le i \le k)$ share common edge and same color.

Input

The first line contains 3 integers n, m, q $(1 \le n, m \le 200, 1 \le q \le 2 \times 10^5)$.

The *i*-th of the following *n* lines contains *m* character $b_{i,1}, b_{i,2}, \ldots, b_{i,m}$. If $b_{i,j} = 1$ then the initial color of cell (i, j) is black, otherwise is white.

The *i*-th of the following *q* lines contains 2 integers x'_i, y'_i . The actual operation is $(x_i, y_i) = (x'_i \oplus o, y'_i \oplus o)$ where *o* is the number of connected components **before** the *i*-th operation $(1 \le x_i \le n, 1 \le y_i \le m)$.

Note that " \oplus " stands for bitwise exclusive-or.

Output

For each operation, an integer denotes the number of connected components.

Examples

standard input	standard output
222	2
01	1
10	
5 5	
0 0	
1 1 1	1
0	
0 0	