Chessboard

Input file:
standard input
Output file: standard output
Time limit: $\quad 3$ seconds
Memory limit: $\quad 64$ megabytes
Bobo had a chessboard with n rows and m columns. Rows are numbered by $1,2, \ldots, n$ from top to bottom, and columns are numbered by $1,2, \ldots, m$ from left to right. Cells are colored into black or white initially.
Bobo might perform q operations. The i-th operation changed the color (from black to white or vice versa) of the cell in the intersection of the x_{i}-th row and y_{i}-th column. He would like to know the number of connected components after each operation.
Note that cells s and t are in the same connected component if there exist cells $c_{0}=s, c_{1}, \ldots, c_{k}=t$ for some k where cells c_{i-1} and $c_{i}(1 \leq i \leq k)$ share common edge and same color.

Input

The first line contains 3 integers $n, m, q\left(1 \leq n, m \leq 200,1 \leq q \leq 2 \times 10^{5}\right)$.
The i-th of the following n lines contains m character $b_{i, 1}, b_{i, 2}, \ldots, b_{i, m}$. If $b_{i, j}=1$ then the initial color of cell (i, j) is black, otherwise is white.
The i-th of the following q lines contains 2 integers $x_{i}^{\prime}, y_{i}^{\prime}$. The actual operation is $\left(x_{i}, y_{i}\right)=\left(x_{i}^{\prime} \oplus o, y_{i}^{\prime} \oplus o\right)$ where o is the number of connected components before the i-th operation ($1 \leq x_{i} \leq n, 1 \leq y_{i} \leq m$).
Note that " \oplus " stands for bitwise exclusive-or.

Output

For each operation, an integer denotes the number of connected components.

Examples

	standard input		standard output
2	2	2	2
10		1	
5	5		
0	0	1	
1	1	1	
0	0		

