Intersection

Input file: standard input
Output file: standard output
Time limit: 2 seconds
Memory limit: 64 megabytes
Bobo had n lines in 2-dimension coordinate axes. Each pair of them has exactly one intersection.
Bobo chose m of the $\binom{n}{2}$ intersections, and would like to find perimeter of the convex hull of unchosen intersections.

Note that the convex hull H of point set P is the minimum convex set containing P.

Input

The first line contains 2 integers $n, m\left(1 \leq n \leq 2 \times 10^{5}, 0 \leq m \leq 50\right)$.
The i-th of the following n lines contains 3 integers a_{i}, b_{i}, c_{i}, which denotes the line $a_{i} x+b_{i} y=c_{i}$ $\left(\left|a_{i}\right|,\left|b_{i}\right|,\left|c_{i}\right| \leq 10^{4}, a_{i}^{2}+b_{i}^{2}>0\right)$.
The i-th of the following m lines contains 2 integers x_{i}, y_{i}, which denotes that the intersection of x_{i}-th and y_{i}-th lines is chosen by Bobo $\left(1 \leq x_{i}, y_{i} \leq n, x_{i} \neq y_{i}\right)$.

Output

A real number denotes perimeter of the convex hull. Answer with absolute or relative error less than 10^{-6} is considered correct.

Examples

	standard input	standard output	
3	0		3.4142135624
1	0	0	
0	1	0	
1	1	1	
3	1		
1	0	0	2.8284271247
0	1	0	
1	1	1	
1	2		
1	0		
1	1	1	4.5532455610
4	2		
1	2	0	
1	3	0	
1	4	0	
1	1	1	
1	2		
1	3		

