Huffman Coding

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	64 megabytes

Bobo learnt Huffman coding, and he tried to add some restrictions.

Bobo had n words to encode. The *i*-th word had weight w_i . He wanted to encode the *i*-th word into sequence $S_i = (s_{i,1}, s_{i,2}, \ldots, s_{i,l_i})$ where:

- 1. $1 \le l_i \le m$.
- 2. Given $r_1, r_2, ..., r_m, 1 \le s_{i,j} \le r_j$ for all $1 \le j \le l_i$.
- 3. For all $i \neq j$, S_i was not prefix of S_j .

Note that sequence $A = (a_1, a_2, \ldots, a_k)$ is prefix of sequence $B = (b_1, b_2, \ldots, b_l)$ if and only if $k \leq l$ and $a_1 = b_1, a_2 = b_2, \ldots, a_k = b_k$.

Bobo would like to find the minimum of $\sum_{1 \le i \le n} w_i \cdot l_i$.

Input

The first line contains 2 integers $n, m \ (1 \le n, m \le 500)$.

The second line contains n integers w_1, w_2, \ldots, w_n $(1 \le w_i \le 500)$.

The third line contains m integers r_1, r_2, \ldots, r_m . $(1 \le r_i \le 500)$

It is guaranteed that $r_1 \cdot r_2 \dots r_m \ge n$.

Output

An integer denotes the minimum.

Examples

standard input	standard output
2 2	7
4 3	
2 1	
3 2	10
1 2 4	
2 2	