Perfect Matching

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 megabytes

Given an undirected graph $G=(V, E)$ with n vertices and m edges, count the number of perfect matchings modulo $\left(10^{9}+7\right)$.
A perfect matching is a permutation $\phi: V \rightarrow V$ where $(v, \phi(v)) \in E$ and $\phi(\phi(v))=v$.

Input

The first line contains 2 integers n and $m\left(1 \leq n \leq 30,0 \leq m \leq \frac{n(n-1)}{2}\right)$.
The i-th of the following m lines contains 2 integers a_{i} and b_{i}, which denotes an edge between the a_{i}-th and b_{i}-th vertices $\left(1 \leq a_{i}, b_{i} \leq n\right)$.
It is guaranteed that the graph contains no loops or multiple edges.

Output

An integer denotes the number of perfect matchings modulo $\left(10^{9}+7\right)$.

Examples

	standard input	
4	4	
1	3	2
1	4	
2	3	
2	4	
4	6	3
1	2	
1	3	
1	4	
2	3	
2	4	
3	4	

