Optimal BST

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 512 megabytes

Bobo recently learnt dynamic programming to solve the "Optimal Binary Search Tree" problem. For a sequence of number $\{a_1, a_2, \ldots, a_n\}$, $OPT(\{a_1, a_2, \ldots, a_n\})$ is defined as:

• $OPT(\{a_1\}) = a_1 \text{ when } n = 1;$

• OPT($\{a_1, a_2, \dots, a_n\}$) = $\min_{1 \le j < n}$ OPT($\{a_1, a_2, \dots, a_j\}$) + OPT($\{a_{j+1}, a_{j+2}, \dots, a_n\}$) + S, where $S = a_1 + a_2 + \dots + a_n$ when n > 1.

Bobo also had a tree T whose vertices conveniently labeled by 1, 2, ..., n. The i-th vertex was associated with number a_i . Let P_i be the sequence of numbers on the path from vertex 1 to vertex i. He would like to work out $OPT(P_i)$ for all i = 1, 2, ..., n.

Input

The first line contains 1 integer $n \ (2 \le n \le 4000)$.

The second line contains n integers a_1, a_2, \ldots, a_n $(1 \le a_i \le 10^9)$.

The third line contains (n-1) integers p_2, p_3, \ldots, p_n where p_i denotes an edge between vertices p_i and i $(1 \le p_i < i)$.

Output

n integers denote $OPT(P_1), OPT(P_2), \ldots, OPT(P_n)$.

Examples

standard input	standard output
3	1
1 2 3	6
1 2	15
3	1
1 2 3	6
1 1	8