Optimal BST

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 megabytes

Bobo recently learnt dynamic programming to solve the "Optimal Binary Search Tree" problem. For a sequence of number $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}, \operatorname{OPT}\left(\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\right)$ is defined as:

- $\operatorname{OPT}\left(\left\{a_{1}\right\}\right)=a_{1}$ when $n=1$;
- $\operatorname{OPT}\left(\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\right)=\min _{1 \leq j<n} \operatorname{OPT}\left(\left\{a_{1}, a_{2}, \ldots, a_{j}\right\}\right)+\operatorname{OPT}\left(\left\{a_{j+1}, a_{j+2}, \ldots, a_{n}\right\}\right)+S$, where $S=a_{1}+a_{2}+\cdots+a_{n}$ when $n>1$.

Bobo also had a tree T whose vertices conveniently labeled by $1,2, \ldots, n$. The i-th vertex was associated with number a_{i}. Let P_{i} be the sequence of numbers on the path from vertex 1 to vertex i. He would like to work out $\operatorname{OPT}\left(P_{i}\right)$ for all $i=1,2, \ldots, n$.

Input

The first line contains 1 integer $n(2 \leq n \leq 4000)$.
The second line contains n integers $a_{1}, a_{2}, \ldots, a_{n}\left(1 \leq a_{i} \leq 10^{9}\right)$.
The third line contains $(n-1)$ integers $p_{2}, p_{3}, \ldots, p_{n}$ where p_{i} denotes an edge between vertices p_{i} and i ($1 \leq p_{i}<i$).

Output

n integeres denote $\operatorname{OPT}\left(P_{1}\right), \operatorname{OPT}\left(P_{2}\right), \ldots, \operatorname{OPT}\left(P_{n}\right)$.

Examples

	standard input		standard output	
3	2	3	1	
1	2	6		
3		15		
1	2	3	1	
1	1	6		

