The Mighty Spell

Input file: standard input
Output file: standard output
Time limit: 2 seconds
Memory limit: 256 megabytes

In a secret camp far far away, the great prophet, ftiasch, is trying to build up a new spell that could solve
any ICPC problem with a single submission.

For this great propose, he has carefully crafted a string of n runes, or simply speaking, enchanted symbols.
There are m different types of runes which are associated with different elements. For example, fire runes,
water runes, light runes, dark runes, C++ runes, loli runes etc. A spell can be forged out of the string by
activate some(probably none) of the runes in the string and deactivate the others.

To solve all the ICPC problems in the world is no easy task, even with the help of magic! So ftiasch would
like to estimate the might of the spell he is going to get.

Basically, any spell works by rebalancing the flow of elemental energy in the world, so if there exists some
element that the spell does not contain an activated rune of that kind, the spell won’t work at all and
thus have might 0.

Even if a spell contains all types of runes, the might still varies and that’s where the crafted string kicks
in. Magical bonds will form between consecutive activated runes and a consecutive segment of [runes
with generate g(l) units of might and the might of the spell is the sum of the mights of all its consecutive
segments. After conducting heavy lots of research involving the forbidden arts of machine learning, ftiasch
finally comes up with the explicit formula that g(z) = 223 + 322 + 3z + 3.

You might have been wondering why ftiasch doesn’t simply activates all the runes in the string? Simply
because ftiasch can’t do that. And more importantly, that will make this problem too easy. In fact, each
rune will be activated independently with probability %, and you have to calculate the expected might of
the spell.

Input
The first line contains two integers n,m (1 < n < 2 x 10°,1 < m < 50). Which are the length of the
string and the number of types of runes.

The second line contains n integers ¢, ca, ..., ¢, (1 < ¢; < m) which describe the string, ¢; is the type of
the i-th rune.

Output
A single integer denotes E x 2" mod (10° + 7) where E is the expected might of the spell.
Examples
standard input standard output

3 2 152

122

4 3 0

1212

6 3 3627

123321

Page 1 of 1

