Problem I. Set Intersection

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 mebibytes

You are given $(n+1)$ sets. Sets consist of integer elements between 1 and $2 n$. The sizes of all sets are exactly n. The number n is even.
Proposition: there are always two sets, intersection of which has at least $\frac{n}{2}$ elements.
The task: find such two sets.

Input

The first line contains an integer $n(1 \leq n \leq 6000, n$ is even $)$. The next $(n+1)$ lines contain $\left\lceil\frac{2 n}{6}\right\rceil$ characters each. Each line contains encoded sequence of $2 n$ zeroes and ones. There is a 1 on j-th position of i-th sequence if i-th set contains element j, or 0 otherwise. Thus, there are exactly n ones in each sequence.
Let us describe the encoding process. Consider a sequence $a_{0}, a_{1}, a_{2}, \ldots, a_{2 n-1}$ of zeroes and ones. Let us append some zeroes to the end of the sequence to make its length divisible by 6 . Now let us create a new sequence: $b_{0}=\sum_{j=0}^{5} a_{j} \cdot 2^{j}, b_{1}=\sum_{j=0}^{5} a_{j+6} \cdot 2^{j}, b_{2}=\sum_{j=0}^{5} a_{j+12} \cdot 2^{j}, \ldots$
The characters with ASCII codes $33+b_{0}, 33+b_{1}, 33+b_{2}, \ldots$ form the encoded sequence.

Output

Sets are enumerated from 1 to $(n+1)$ in the order they are given in the input. Output two different integers: the numbers of sets, intersection of which has at least $\frac{n}{2}$ elements. If there are several possible answers, output any one of them.

Example

	standard input	
4	23	standard output
7 "		
*\$		
D\#		
M"		
$; "$		

Note

Decoded sequences:

1. 01101010
2. 10010011
3. 11000101
4. 00110110
5. 01011010
