Frank Sinatra

Input file: standard input
Output file: standard output
Time limit:
6 seconds
Memory limit:
256 mebibytes
You are given a bidirectional graph T which is a tree consisting of n vertices and $n-1$ edges. Each edge of the tree is associated with some non-negative integer x_{i}.

Your task has a very simple description. You are given q queries. In j-th, query you have to find the smallest non-negative integer y that is not present in the set of all integers associated with edges of the simple path between vertices a_{j} and b_{j}.

Input

The first line of input contains two integers n and $q\left(2 \leq n \leq 10^{5}, 1 \leq q \leq 10^{5}\right)$, the number of vertices of the tree and the number of queries.

The following $n-1$ lines contain triples of integers $u_{i}, v_{i}, x_{i}\left(1 \leq u_{i}, v_{i} \leq n, u_{i} \neq v_{i}, 0 \leq x_{i} \leq 10^{9}\right)$, each denoting an edge $\left(u_{i}, v_{i}\right)$ associated with an integer x_{i}.
The following q lines contain pairs of integers $a_{j}, b_{j}\left(1 \leq a_{j}, b_{j} \leq n\right)$, each denoting a query about the path between vertices a_{j} and b_{j}.

Output

For each query, output one line containing the smallest non-negative y such that there is no edge associated with y lying on the corresponding simple path.

Example

		standard input	
7	6		0
2	1	1	1
3	1	2	2
1	4	0	2
4	5	1	3
5	6	3	3
5	7	4	
1	3		
4	1		
2	4		
2	5		
3	5		
3	7		

