Frank Sinatra

Input file:	standard input
Output file:	standard output
Time limit:	6 seconds
Memory limit:	256 mebibytes

You are given a bidirectional graph T which is a tree consisting of n vertices and n-1 edges. Each edge of the tree is associated with some non-negative integer x_i .

Your task has a very simple description. You are given q queries. In *j*-th, query you have to find the smallest non-negative integer y that is not present in the set of all integers associated with edges of the simple path between vertices a_j and b_j .

Input

The first line of input contains two integers n and q ($2 \le n \le 10^5$, $1 \le q \le 10^5$), the number of vertices of the tree and the number of queries.

The following n-1 lines contain triples of integers u_i , v_i , x_i $(1 \le u_i, v_i \le n, u_i \ne v_i, 0 \le x_i \le 10^9)$, each denoting an edge (u_i, v_i) associated with an integer x_i .

The following q lines contain pairs of integers a_j , b_j $(1 \le a_j, b_j \le n)$, each denoting a query about the path between vertices a_j and b_j .

Output

For each query, output one line containing the smallest non-negative y such that there is no edge associated with y lying on the corresponding simple path.

Example

standard input	standard output
7 6	0
2 1 1	1
3 1 2	2
1 4 0	2
4 5 1	3
563	3
574	
1 3	
4 1	
2 4	
2 5	
3 5	
3 7	