Problem G. Paint

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

Snuke wants to paint a picture. His picture is simply a sequence of black and white cells.

Initially, he prepares a strip of white paper, and divides it into N cells. Then, he performs K operations. In the *i*-th operation, he chooses consecutive a_i cells, and paint these cells black. All chosen white cells will become black, and all chosen black cells will remain unchanged.

How many distinct pictures can he draw?

Compute the answer modulo $10^9 + 7$. Two pictures are considered different if the color of at least one cell is different. We don't rotate pictures — for example, (black – black – white) and (white – black – black) are different pictures.

Input

First line of the input contains two integers N and K $(1 \le N \le 10^9, 1 \le K \le 4)$. The *i*-th of next K lines contains a_i — number of cells for *i*-th operation $(1 \le a_i \le N)$.

Output

Print the answer in a single line.

Examples

standard input	standard output
10 2	55
1	
1	
100000000 4	782767239
2015	
2015	
123456789	
27	

Note

In Sample 1, you can draw all pictures that have either one or two black cells.