Problem A. Multi-stage Marathon

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
3 seconds
512 megabytes

Bobo is organizing a marathon contest. The contest contains n checkpoints which are conveniently labeled with $1,2, \ldots, n$. You are given a binary matrix G. In this matrix, $G_{u, v}=1$ indicates that there is a directed road from checkpoint u to checkpoint v, and $G_{u, v}=0$ means there is no such road.
There are m players. The i-th player starts at checkpoint v_{i} at moment t_{i}. As the road system is complicated, players behave quite randomly. More precisely, if at moment t a player is at checkpoint u, at moment $(t+1)$ this player will appear at any checkpoint v such that $G_{u, v}=1$ with equal probability. Let $E_{t}=P \cdot Q^{-1} \bmod \left(10^{9}+7\right)$ where $\frac{P}{Q}$ is the expected number of players at checkpoint n at moment t, and $Q \cdot Q^{-1} \equiv 1 \bmod \left(10^{9}+7\right)$. Bobo would like to know $E_{1} \oplus E_{2} \oplus \cdots \oplus E_{T}$. Note that " \oplus " denotes bitwise exclusive-or.

Input

The first line contains three integers n, m and $T\left(1 \leq n \leq 70,1 \leq m \leq 10^{4}, 1 \leq T \leq 2 \cdot 10^{6}\right)$.
The i-th of the following n lines contains a binary string $G_{i, 1}, G_{i, 2}, \ldots, G_{i, n}$ of length n. It is guaranteed that $G_{i, i}=1$ is always true.

The i-th of the last m lines contains two integers t_{i} and $v_{i}\left(1 \leq t_{1}<t_{2}<\cdots<t_{m} \leq T, 1 \leq v_{i} \leq n\right)$.

Output

Output an integer which denotes the result.

Examples

standard input	standard output	
22	2	500000005
11		
1	1	
2	2	191901811
3	1	6
110		
011		
101	1	
1		

