Problem A. Multi-stage Marathon

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	512 megabytes

Bobo is organizing a marathon contest. The contest contains n checkpoints which are conveniently labeled with $1, 2, \ldots, n$. You are given a binary matrix G. In this matrix, $G_{u,v} = 1$ indicates that there is a directed road from checkpoint u to checkpoint v, and $G_{u,v} = 0$ means there is no such road.

There are *m* players. The *i*-th player starts at checkpoint v_i at moment t_i . As the road system is complicated, players behave quite randomly. More precisely, if at moment *t* a player is at checkpoint *u*, at moment (t + 1) this player will appear at any checkpoint *v* such that $G_{u,v} = 1$ with equal probability. Let $E_t = P \cdot Q^{-1} \mod (10^9 + 7)$ where $\frac{P}{Q}$ is the expected number of players at checkpoint *n* at moment *t*, and $Q \cdot Q^{-1} \equiv 1 \mod (10^9 + 7)$. Bobo would like to know $E_1 \oplus E_2 \oplus \cdots \oplus E_T$. Note that " \oplus " denotes bitwise exclusive-or.

Input

The first line contains three integers n, m and T $(1 \le n \le 70, 1 \le m \le 10^4, 1 \le T \le 2 \cdot 10^6)$.

The *i*-th of the following *n* lines contains a binary string $G_{i,1}, G_{i,2}, \ldots, G_{i,n}$ of length *n*. It is guaranteed that $G_{i,i} = 1$ is always true.

The *i*-th of the last *m* lines contains two integers t_i and v_i $(1 \le t_1 < t_2 < \cdots < t_m \le T, 1 \le v_i \le n)$.

Output

Output an integer which denotes the result.

Examples

standard input	standard output
2 2 2	50000005
11	
11	
1 1	
2 2	
3 1 6	191901811
110	
011	
101	
1 1	