Problem A. Order-Preserving Partition

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
512 mebibytes

Bobo has two permutations: $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ and $Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$. He would like to partition P into four non-empty and contiguous parts in such a manner that:

- The numbers in each part can be rearranged to form an interval of values: an increasing sequence where each element is greater than the previous by exactly one.
- For all $1 \leq i<j \leq 4,\left(s_{i}-s_{j}\right) \cdot\left(q_{i}-q_{j}\right)>0$ where s_{i} is the minimum value in the i-th part.

Bobo wants to know the number of such partitions. As the number may be very large, you just need to print the answer modulo $\left(10^{9}+7\right)$.

Input

The input contains zero or more test cases, and is terminated by end-of-file. For each test case:
The first line contains an integer n, the length of the first permutation $\left(4 \leq n \leq 10^{6}\right)$.
The second line contains n integers $p_{1}, p_{2}, \ldots, p_{n}$.
The third line contains four integers $q_{1}, q_{2}, q_{3}, q_{4}$.
It is guaranteed that the sum of all n does not exceed 10^{6}.

Output

For each test case, output an integer denoting the answer.

Example

standard input	standard output
10	0
214431098756	84
2413	
10	
12345678910	
1234	

