Problem L. Lines

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 mebibytes

Given are three arrays of $n+1$ integers: a, b, c.
We define $3 n+1$ functions $F_{0}, F_{1}, \ldots, F_{3 n}$ as follows:

$$
F_{i}(t)=i t+\max _{\substack{0 \leq x, y, z \leq n \\ x+y+z=i}}\left(a_{x}+b_{y}+c_{z}\right) .
$$

A function F_{i} is said to be NeVeR_LosEs if and only if there does not exist a real number t such that $F_{i}(t)>F_{j}(t)$ for all $j \neq i$.

Your task is to find out which functions can be called NeVeR_LosEs.

Input

The first line contains an integer $n\left(1 \leq n \leq 3 \cdot 10^{5}\right)$.
The second line contains the array $a_{0}, a_{1}, \ldots, a_{n}\left(0 \leq a_{i} \leq 10^{9}\right)$.
The third line contains the array $b_{0}, b_{1}, \ldots, b_{n}\left(0 \leq b_{i} \leq 10^{9}\right)$.
The fourth line contains the array $c_{0}, c_{1}, \ldots, c_{n}\left(0 \leq c_{i} \leq 10^{9}\right)$.

Output

On the first line, print an integer m, the number of functions that can be called NeVeR_LosEs.
On the second line, print m integers $0 \leq i_{1} \leq \ldots \leq i_{m} \leq 3 n$, the indices of these functions in ascending order.

Examples

standard input	standard output
$\begin{array}{\|llll} \hline 3 & & & \\ 3 & 1 & 8 & 7 \\ 9 & 1 & 3 & 1 \\ 5 & 1 & 1 & 6 \end{array}$	$\begin{array}{lllll} 5 & & & & \\ 1 & 3 & 4 & 7 & 8 \end{array}$
$\begin{array}{ll} \hline 1 & \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{array}$	$\begin{array}{ll} 2 \\ 12 \end{array}$

