

The 2nd Universal Cup Stage 4: Taipei, October 7-8, 2023

Problem L. Lines

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 mebibytes

Given are three arrays of n + 1 integers: a, b, c.

We define 3n + 1 functions F_0, F_1, \ldots, F_{3n} as follows:

$$F_i(t) = it + \max_{\substack{0 \le x, y, z \le n \\ x+y+z=i}} (a_x + b_y + c_z).$$

A function F_i is said to be **NeVeR_LosEs** if and only if there does not exist a real number t such that $F_i(t) > F_j(t)$ for all $j \neq i$.

Your task is to find out which functions can be called NeVeR LosEs.

Input

The first line contains an integer n $(1 \le n \le 3 \cdot 10^5)$.

The second line contains the array $a_0, a_1, \ldots, a_n \ (0 \le a_i \le 10^9)$.

The third line contains the array b_0, b_1, \ldots, b_n $(0 \le b_i \le 10^9)$.

The fourth line contains the array $c_0, c_1, \ldots, c_n \ (0 \le c_i \le 10^9)$.

Output

On the first line, print an integer m, the number of functions that can be called **NeVeR** LosEs.

On the second line, print m integers $0 \le i_1 \le ... \le i_m \le 3n$, the indices of these functions in ascending order.

Examples

$standard\ input$	$standard\ output$
3	5
3 1 8 7	1 3 4 7 8
9 1 3 1	
5 1 1 6	
1	2
1 2	1 2
1 2	
1 2	