Inverted

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 megabytes

Given a tree with n nodes initially numbered from 1 to n, and a node sequence of $n-1$ length, we are going to perform operations on the tree according to the order of the sequence.

For each operation, if the node to be operated is x, firstly create a new node numbered $x+n$. For any integer $i \in[1, n]$ that the edge (x, i) exists:

- If the node $i+n$ does not exist, we connect $(x+n, i)$.
- If the node $i+n$ exists (in this case, the edge $(x, i+n)$ always exists), we connect $(x+n, i+n)$ and delete edge $(x, i+n)$.

For the resulting graph after each operation, calculate the number of spanning trees modulo 998244353.

Input

The first line contains an integer $n(1 \leq n \leq 5000)$, indicating the size of the tree.
The next $n-1$ lines each contain two numbers u and $v(1 \leq u, v \leq n)$, representing an edge (u, v) in the tree. It is guaranteed that the input forms a valid tree.

The next line contains $n-1$ distinct numbers $b_{i}\left(1 \leq b_{i} \leq n\right)$, representing the sequence of nodes to be operated in order.

Output

Output $n-1$ lines, the only number in i-th line represents the number of spanning trees in the graph after the i-th operation, modulo 998244353.

Example

	standard input		standard output
5		4	
1	2	4	
1	3	6	
2	4	1	
2	5		
1	5	2	

