Inverted

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

Given a tree with n nodes initially numbered from 1 to n, and a node sequence of n-1 length, we are going to perform operations on the tree according to the order of the sequence.

For each operation, if the node to be operated is x, firstly create a new node numbered x + n. For any integer $i \in [1, n]$ that the edge (x, i) exists:

- If the node i + n does not exist, we connect (x + n, i).
- If the node i + n exists (in this case, the edge (x, i + n) always exists), we connect (x + n, i + n) and delete edge (x, i + n).

For the resulting graph after each operation, calculate the number of spanning trees modulo 998244353.

Input

The first line contains an integer n ($1 \le n \le 5000$), indicating the size of the tree.

The next n-1 lines each contain two numbers u and v ($1 \le u, v \le n$), representing an edge (u, v) in the tree. It is guaranteed that the input forms a valid tree.

The next line contains n-1 distinct numbers b_i $(1 \le b_i \le n)$, representing the sequence of nodes to be operated in order.

Output

Output n-1 lines, the only number in *i*-th line represents the number of spanning trees in the graph after the *i*-th operation, modulo 998244353.

Example

standard input	standard output
5	4
1 2	4
1 3	6
2 4	1
2 5	
1 5 2 3	